To buy, sell, rent or trade-in this product please click on the link below: http://www.avionteq.com/HP-Agilent-53132A-Universal-Counter.aspx

AvionTEq

Agilent 53131A/132A/181A Counters

High-performance, low-cost counters simplify and speed systems and bench frequency measurements

Data Sheet

- 225 MHz bandwidth (optional 1.5, 3, 5, or 12.4 GHz)
- 10- or 12-digit resolution with 1 s gate time
- GPIB interface and IntuiLink connectivity software standard
- Data transfer rate of up to 200 fully formatted measurements/second

A family of universal and RF counters to meet your needs

Agilent Technologies 53131A/ 132A/181A high-performance counters give you fast, precise frequency measurements at an affordable price. These counters feature an intuitive user interface and one-button access to frequently used functions so you can make accurate measurements quickly and easily.

Real-time digital signal processing technology is used to analyze data while simultaneously taking new readings, speeding measurement throughput. The technology, developed for Agilent's high-end line of modulation domain analyzers, allows the counters to gather more data for each measurement, so you get higherresolution measurements in a fraction of the time it takes other counters.

The 53131A/132A/181A counters offer built-in statistics and math functions so you can scale measurements and simultaneously measure and track average, min/max and standard deviation. Automated limit testing lets you set upper and lower limits for any measurement. An analog display mode lets you see at a glance whether a measurement is within pass/fail limits. The counters flag out-of-limit conditions and can generate an output signal to trigger external devices when a limit is exceeded. For quick access to frequently used tests, a single keystroke recalls up to 20 different stored frontpanel set-ups.

For computer-controlled systems applications, each counter includes a standard GPIB interface with full SCPI-compatible programmability and a data transfer rate of up to 200 fully formatted measurements per second. The standard RS-232 talk-only interface provides printer support or data transfer to a computer through a terminal-emulation program.

Agilent 53131A Universal Counter

The two-channel 53131A counter offers 10 digits per second of frequency/period resolution and a bandwidth of 225 MHz. Time interval resolution is specified at 500 ps. An optional third channel provides frequency measurements up to 3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.

Agilent 53132A Universal Counter

For applications requiring higher resolution, the 53132A offers the same features and functions as the 53131A, with up to 12 digits/ sec frequency/period resolution and 150 ps time interval resolution. In addition, the 53132A offers advanced arming modes for time interval measurements.

Agilent 53181A RF Counter

Optimized for RF applications, the single-channel 10 digit/s 53181A measures frequency, period and peak voltage. A digitblanking function lets you easily eliminate unnecessary digits when you want to read measurements quickly. For higher-frequency measurements, choose an optional second channel that provides measurements up to 1.5 GHz, 3 GHz, 5 GHz, or 12.4 GHz. A self-guided shallow menu makes this counter exceptionally easy to use.

Agilent IntuiLink provides easy access to the counter's data from your PC

The Agilent 53131A/132A/181A counters, capture precise frequency and time measurements. IntuiLink software allows that data to be put to work easily. You work in a familiar environment at all times, using PC applications such as Microsoft Excel® or Word® to analyze, interpret, display, print, and document the data you get from the counter.

It gives you the flexibility to configure and run tests from your PC making data gathering more convenient. Agilent IntuiLink lets you:

- configure tests, including measurement type, number of readings, measurement speed, and more.
- choose display modes from real-time strip chart, histogram, readout, and table mode.
- scale measurements data.
- copy captured data to other programs.

Optional timebases offer increased stability

Optional timebases are available for 53131A/132A/181A counters to increase measurement accuracy. Option 010 provides a high stability oven timebase with aging of less than 5 x 10^{-10} per day.

1-year warranty

Each counter comes with operating, programming and service manuals, IntuiLink software, a power cord and a full 1-year warranty.

Time Base

Internal Time Base Stability (see graph 3 for timebase contribution of measurement error)

		Standard (0° to 50°C)	Medium Oven (Option 001)	High Oven (Option 010)	Ultra High Oven (Option 012 for 53132A only)
Temperature Stab	ility (referenced to 25°C)	< 5 x 10 ⁻⁶	< 2 x 10 ⁻⁷	< 2.5 x 10 ⁻⁹	< 2.5 x 10 ⁻⁹
Aging Rate (after 30 days)	Per Day: Per Month: Per Year:	< 3 x 10 ⁻⁷	< 4 x 10 ⁻⁸ < 2 x 10 ⁻⁷	< 5 x 10 ⁻¹⁰ < 1.5 x 10 ⁻⁸	< 1 x 10 ⁻¹⁰ < 3 x 10 ⁻⁹ < 2 x 10 ⁻⁸
Turn-on stability v (in 30 minutes)	vs. time		< 2 x 10 ⁻⁷ referenced to 2 h	< 5 x 10 ^{.9} referenced to 24 h	< 5 x 10 ^{.9} referenced to 24 h
Calibration		Manual Adjust	Electronic	Electronic	Electronic

Note that power to the time base is maintained when the counter is placed in standby via the front panel switch. The internal fan will continue to operate when in standby to maintain long-term measurement reliability.

Instrument Inputs

Input Specifications

Channel 1 & 2 (53131A, 53132A)¹ Channel 1 (53181A)

Frequency Range

dc Coupled	dc to 225 MHz
ac Coupled	1 MHz to 225 MHz (50 $\Omega)$ 30 Hz to 225 MHz (1 M $\Omega)$
FM Tolerance	25%

Voltage Range and Sensitivity (Sinusoid)²

dc to 100 MHz	20 mVrms to ± 5 V ac + dc
100 MHz to 200 MHz	30 mVrms to ±5 V ac + dc
200 MHz to 225 MHz	40 mVrms to ± 5 V ac + dc (all specified at 75 mVrms with opt. rear connectors) ³

Voltage Range and Sensitivity (Single-Shot Pulse)²

4.5 ns to 10 ns Pulse Width	100 mVpp to 10 Vpp (150 mVpp with optional rear connectors) ³
>10 ns Pulse Width	50 mVpp to 10 Vpp (100 mVpp with optional rear connectors) ³

Trigger Level²

Range	± 5.125 V
Accuracy	± (15 mV + 1% of trigger level)
Resolution	5 mV

Damage Level

50 Ω	5 Vrms
0 to 3.5 kHz, 1 MΩ	350 Vdc + ac pk
3.5 kHz to 100 kHz, 1 MΩ	350 Vdc + ac pk linearly derated to 5 Vrms
>100 kHz, 1 MΩ	5 Vrms

Input Characteristics

Channel 1 & 2 (53131A, 53132A)' Channel 1 (53181A)		
Impedance	1 M Ω or 50 Ω	
1 MΩ Capacitance	30 pF	
Coupling	ac or dc	
Low-Pass Filter	100 kHz, switchable -20 dB at > 1 MHz	
Input Sensitivity	Selectable between Low, Medium, or High (default). Low is approximately 2x High Sensitivity.	
Trigger Slope	Positive or Negative	
Auto Trigger Le	evel	
Range	0 to 100% in 10% steps	
Frequency	> 100 Hz	
Input Amplitude	> 100 mVpp	

put Amplitude	> 100 mVpp
	(No amplitude modulation)

Attenuator

Voltage Range x10 Trigger Range x10

Input Specifications⁴

Channel 3 (53131A, 53132A) Channel 2 (53181A)

Frequency Range

Option 015 (for 53181A only)	100 MHz to 1.5 GHz (see Opt. 030 for additional specs)
Option 030	100 MHz to 3 GHz
Option 050	200 MHz to 5 GHz
Option 124	200 MHz to 12.4 GHz

Power Range and Sensitivity (Sinusoid)

1.	'
100 MHz to 2.7 GHz:	
-27 dBm to +19 dBm	
2.7 GHz to 3 GHz:	
-21 dBm to +13 dBm	
200 MHz to 5 GHz:	
-23 dBm to +13 dBm	
200 MHz to 12.4 GHz	
-23 dBm to +13 dBm	
	100 MHz to 2.7 GHz: -27 dBm to +19 dBm 2.7 GHz to 3 GHz: -21 dBm to +13 dBm 200 MHz to 5 GHz: -23 dBm to +13 dBm 200 MHz to 12.4 GHz -23 dBm to +13 dBm

Damage Level

Option 030	5 Vrms
Option 050	+25 dBm
Option 124	+25 dBm

Characteristics

Impedance	50Ω
Coupling	AC
VSWR	<2.5:1

External Arm Input Specifications⁵

Signal Input Range

TTL Compatible

Timing Restrictions

Pulse Width> 50 nsTransition Time< 250 ns</td>Start-to-Stop Time> 50 ns

Damage Level 10 Vrms

External Arm Input Characteristics⁵

Impedance 1 kΩ Input Capacitance 17 pF Start/Stop Slope Positive or Negative

External Time Base Input Specifications

Voltage Range	200 mVrms to 10 Vrms
Damage Level	10 Vrms
Frequency	1 MHz, 5 MHz, and 10 MHz (53132A 10 MHz only)

Time Base Output Specifications

Output Frequency	10 MHz
Voltage	> 1 Vpp into 50 Ω (centered around 0 V)

1. Specifications and Characteristics for Channels 1 and 2 are identical for both common and separate configurations.

- 2. Values shown are for X1 attenuator setting. Multiply all values by 10 (nominal) when using the X10 attenuator setting.
- 3. When the 53131A or 53132A are ordered with the optional rear terminals (Opt. 060), the channel 1 and 2 inputs are active on both front and rear of the counter. When the 53181A is ordered with the optional rear terminal, the channel 1 input is active on both front and rear of the counter. For this condition, specifications indicated for the rear connections also apply to the front connections.
- 4. When optional additional channels are ordered with Opt. 060, refer to configuration table for Opt. 060 under ordering info on page 8. There is no degradation in specifications for this input, as applicable.

5. Available for all measurements except Peak Volts. External Arm is referred to as External Gate for some measurements.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	For Time or Digits Arming:		
$\begin{aligned} & \text{RMS Resolution} \left(\frac{4 \times \sqrt{t_{res}^2 + (2 \times Trigger Error^2)}}{Gate Time \times \sqrt{Number of Samples}} + \frac{t_{jitter}}{Gate Time} \right) \times \frac{Frequency}{Period} \\ & \frac{53131A/181A}{t_{res} t_{jitter} t_{res} t_{jitter}}{typical 500 \text{ ps} 50 \text{ ps} 225 \text{ ps} 3 \text{ ps}} \\ & \text{see graphs for worst case resolution performance} \\ & \text{Number of Samples} = \text{Gate Time } \times \text{Frequency} (\text{Frequency} < 200 \text{ kHz}) \\ & \text{Gate Time } \times 200,000 (\text{Frequency} > 200 \text{ kHz}) \\ & \text{Gate Time } \times 200,000 (\text{Frequency} > 200 \text{ kHz}) \\ & \text{Systematic Uncertainty:} \left(\pm Time Base Error \pm \frac{t_{acc}}{Gate Time}} \right) \times \frac{Frequency}{Period} \\ & \frac{53131A/181A}{t_{acc} \qquad t_{acc}} \\ & \frac{t_{acc} \qquad t_{acc}}{t_{acc}} \\ \hline typical 100 \text{ ps} \qquad 10 \text{ ps} \\ & \text{worst case} 300 \text{ ps} \\ & 100 \text{ ps} \end{aligned}$	LSD Displ	ayed: $\left(\frac{2\sqrt{2}}{\textit{Gate Time} \times \sqrt{\textit{Num}}}\right)$	$\frac{1}{1} \times t_{res}$ $+ \frac{t_{jitter}}{Gate Time} $ $\times \frac{Frequency}{or}$ $Period$
$\frac{\begin{array}{c} 53131A/181A}{t_{res}} \begin{array}{c} 53132A}{t_{res}} t_{jitter}} \\ \hline typical 500 \text{ ps} 50 \text{ ps} 225 \text{ ps} 3 \text{ ps}} \\ \text{see graphs for worst case resolution performance} \\ \\ \text{Number of Samples} = \text{ Gate Time x Frequency} (\text{Frequency} < 200 \text{ kHz}) \\ \text{ Gate Time x 200,000} (\text{Frequency} > 200 \text{ kHz}) \\ \\ \hline \text{Systematic Uncertainty:} \left(\pm \text{ Time Base Error} \pm \frac{t_{acc}}{\text{Gate Time}} \right) \times \frac{\text{Frequency}}{\text{Period}} \\ \\ \hline \frac{53131A/181A}{t_{acc}} \frac{t_{acc}}{t_{acc}} \\ \\ \hline typical 100 \text{ ps} 10 \text{ ps} \\ \\ \hline \text{worst case} 300 \text{ ps} 100 \text{ ps} \end{array}$	RMS Rest (see grap	$\frac{4 \times \sqrt{t_{res}^2 + (2 \times \sqrt{t_{res}^2})}}{Gate \ Time \times \sqrt{Nun}}$	$\frac{Trigger \ Error^2)}{mber \ of \ Samples} + \frac{t_{jitter}}{Gate \ Time} \right) \times \frac{Frequency}{or}_{Period}$
$\frac{1}{\text{typical}} = \frac{1}{500 \text{ ps}} = \frac{1}{50 \text{ ps}} = \frac{1}{225 \text{ ps}} = \frac{1}{3 \text{ ps}}$ see graphs for worst case resolution performance Number of Samples = Gate Time x Frequency (Frequency < 200 kHz) Gate Time x 200,000 (Frequency > 200 kHz) Systematic Uncertainty: $\left(\pm Time Base Error \pm \frac{t_{acc}}{Gate Time}\right) \times \frac{Frequency}{Period}$ $\frac{53131A/181A}{t_{acc}} = \frac{t_{acc}}{t_{acc}}$ typical 100 ps 10 ps worst case 300 ps 100 ps		53131A/181A t	53132A
Number of Samples = Gate Time x Frequency (Frequency < 200 kHz) Gate Time x 200,000 (Frequency > 200 kHz)Systematic Uncertainty: $t Time Base Error \pm \frac{t_{acc}}{Gate Time}$ $\times \frac{Frequency}{Period}$ 53131A/181A 53132A $\frac{t_{acc}}{t_{acc}}$ t_{acc} typical 100 ps10 psworst case 300 ps	typical see graph	500 ps 50 ps s for worst case resolution	225 ps 3 ps performance
Systematic Uncertainty: t Time Base Error $\pm \frac{t_{acc}}{Gate Time}$ Frequency or Period53131A/181A53132A $\frac{t_{acc}}{t_{acc}}$ t_{acc} typical100 ps100 ps100 psworst case300 ps	Number o	Samples = Gate Time x Fr Gate Time x 20	equency (Frequency < 200 kHz) 0,000 (Frequency > 200 kHz)
53131A/181A 53132A t _{acc} t _{acc} typical 100 ps 10 ps worst case 300 ps 100 ps	Systemat	c Uncertainty: $\left(\pm Time Bas\right)$	$e \ Error \pm rac{t_{acc}}{Gate \ Time} ightarrow rac{Frequency}{or} Period$
tacctacctypical100 ps10 psworst case300 ps100 ps		53131A/181A	53132A
typical 100 ps 10 ps worst case 300 ps 100 ps		t _{acc}	t _{acc}
worst case 300 ps 100 ps	typical	100 ps	10 ps
	worst cas	e 300 ps	100 ps

Measurement Specifications

Frequency (53131A, 53132A, 53181A)

Channel 1 and 2 (53131A, 53132A) Channel 1 (53181A)

Range 0.1 Hz to 225 MHz

Channel 3 (53131A, 53132A) Channel 2 (53181A)

Option 015 (53181A only)	100 MHz to 1.5 GHz
Option 030	100 MHz to 3 GHz
Option 050	200 MHz to 5 GHz
Option 124	200 MHz to 12.4 GHz
(D	-la stable die ODID and d

(Period 2 or 3 selectable via GPIB only)

Period (53131A, 53132A, 53181A)

Channel 1 (53181A)					
Range	4.44 ns to 10 s				
Channel 3 (53 Channel 2 (53	Channel 3 (53131A, 53132A) Channel 2 (53181A)				
Option 015 (53181A only)	0.66 ns to 10 ns				
Option 030	0.33 ns to 10 ns				
Option 050	0.2 ns to 5 ns				
Option 124	80 ps to 5 ns				

Frequency Ratio (53131A, 53132A, 53181A)

Measurement is specified over the full signal range of each input.			
Results Range	10 ⁻¹⁰ to 10 ¹¹		
"Auto" Gate Time	100 ms		

Time Interval (53131A, 53132A)

Measurement is specified over the full signal ranges[®] of Channels 1 and 2.

LSD 500 ps (53131A)/150 ps (53132A)

Phase (53131A, 53132A)

Measurement is specified over the full signal range of Channels 1 and 2. Results Range -180° to +360°

Duty Cycle (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1. However, both the positive and negative pulse widths must be greater than 4 ns.

Results Range 0 to 1 (e.g. 50% duty cycle would be displayed as .5)

Rise/Fall Time (53131A, 53132A)

Measurement is specified over the full signal ranges of Channel 1. The interval between the end of one edge and start of a similar edge must be greater than 4 ns. Edge Selection Positive or Negative Trigger Default setting is Auto Trigger at 10% and 90% Results Range 5 ns to 10⁵ s

LSD 500 ps (53131A)/150 ps (53132A)

Pulse Width (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1. The width of the opposing pulse must be greater than 4 ns.

Pulse Selection	Positive or Negative
Trigger	Default setting is Auto Trigger at 50%
Results Range	5 ns to 10⁵ s
LSD	500 ps (53131A)/150 ps (53132A)

Totalize (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1.			
Results Range	0 to 10 ¹⁵		

Resolution ± 1 count

Peak Volts (53131A, 53132A, 53181A)

Measurement is specified on Channels 1 and 2 for dc signals; or for ac signals of frequencies between 100 Hz and 30 MHz with peak-to-peak amplitude greater than 100 mV.

Results Range -5.1 V to +5.1 V

Resolution 10 mV

Peak Volts Systematic Uncertainty

for ac signals: 25 mV + 10% of V for dc signals: 25 mV + 2% of V

Use of the input attenuator multiplies all voltage specifications (input range, results range, resolution and systematic uncertainty) by a nominal factor of 10.

Gate Time

Auto Mode, or 1 ms to 1000 s

Measurement Throughput

GPIB ASCII	200 measurements/s	(maximum))
------------	--------------------	-----------	---

Measurement Arming

Start Veasurement	Free Run, Manual, or External
Stop Vleasurement	Continuous, Single, External, or Timed
Fime Interval	100 µs to 10 s (53131A)
Delayed Arming	100 ns to 10 s (53132A)

Arming Modes

(Note that not all arming modes are available for every measurement function.)

- Available for all measurements except Peak Volts. External Arm is referred to as External Gate for some measurements.
- See Specifications for Pulse Width and Rise/Fall Time measurements for additional restrictions on signal timing characteristics

Auto Arming: Measurements are initiated immediately and acquired as fast as possible, using a minimum number of signal edges.

Timed Arming: The duration of the measurement is internally timed to a user-specified value (also known as the "gate time").

Digits Arming: Measurements are performed to the requested resolution (number of digits) through automatic selection of the acquisition time.

External Arming: An edge on the External Arm Input enables the start of each measurement. Auto Arming, Timed arming modes or another edge on the External Arm Input may be used to complete the measurement. **Time Interval Delayed Arming:** For Time Interval measurements, the Stop Trigger condition is inhibited for a user-specified time following the Start Trigger. The 53132A offers advanced time interval arming capabilities including use of user specified time or Channel 2 events to delay both Start and Stop Triggers.

Measurement Limits

Limit Checking: The measurement value is checked against user-specified limits at the end of each measurement.

Display Modes: The measurement result may be displayed as either the traditional numeric value or graphically as an asterisk moving between two vertical bars.

Out-of-Limits Indications:

- The limits annunciator will light on the front panel display.
- The instrument will generate an SRQ if enabled via GPIB.
- The limits hardware signal provided via the RS-232 connector will go low for the duration of the out-of-limit condition.
- If the Analog Display mode is enabled, the asterisk appears outside the vertical bars, which define the upper and lower limits.

Fractional Time Base Error (see graph 3)

Time base error is the maximum fractional frequency variation of the time base due to aging or fluctuations in ambient temperature or line voltage:

Time Base Error =
$$\left(\frac{\Delta f}{f} aging rate + \frac{\Delta f}{f} temperature + \frac{\Delta f}{f} line voltage\right)$$

Multiply this quantity by the measurement result to yield the absolute error for that measurement. Averaging measurements will not reduce (fractional) time base error. The counters exhibit negligible sensitivity to line voltage; consequently the line voltage term may be ignored.

Trigger Error

External source and input amplifier noise may advance or delay the trigger points that define the beginning and end of a measurement. The resulting timing uncertainty is a function of the slew rate of the signal and the amplitude of spurious noise spikes (relative to the input hysteresis band). The (rms) trigger error associated with a single trigger point is:

Trigger Error =
$$\frac{\sqrt{(E_{input})^2 + (E_{signal})^2}}{Input Signal Slew Rate at Trigger Point}$$
 (in seconds)

where

 E_{input} = RMS noise of the input amplifier: 1 mVrms (350 µVrms Typical). Note that the internal measurement algorithms significantly reduce the contribution of this term.

 E_{signal} = RMS noise of the input signal over a 225 MHz bandwidth (100 kHz bandwidth when the low-pass filter is enabled). Note that the filter may substantially degrade the signal's slew rate at the input of the trigger comparator.

For two-trigger-point measurements (e.g. Rise Time, Pulse Width), the Trigger Errors will be referred to independently as Start Trigger Error and Stop Trigger Error.

Trigger Level Timing Error (see graph 6)

Trigger level timing error results from a deviation of the actual trigger level from the specified level. The magnitude of this error depends on resolution and accuracy of the trigger level circuit, input amplifier fidelity, input signal slew rate, and width of the input hysteresis band.

The following equations should be summed together to obtain the overall Trigger Level Timing Error. At the "High" sensitivity input setting, the hysteresis band can be assumed to be the sensitivity of the counter input (see page 2). Reduction of input sensitivity or use of the attenuator will increase the size of this band.

Input Hysteresis Error:	0.5 x Hysteresis Band		0.5 x Hysteresis Band
. ,	Input Signal Slew Rate at Start Trigger Point	Ir	nput Signal Slew Rate at Stop Trigger Point
Trigger Level Setting Error:	± <u>15 mV±(1% x Start Trigger Level Setting)</u>	±	15 mV±(1% x Stop Trigger Level Setting)
	mput olynal olew hate at otart myger i olint		mput olynal olew hate at otop myger i olin

Differential Channel Error

The differential channel error term stated in several Systematic Uncertainty equations accounts for channel-to-channel mismatch and internal noise. This error can be substantially reduced by performing a TI calibration (accessible via the Utility Menu) in the temperature environment in which future measurements will be made.

Graph 1: Agilent 53131A/181A–Worst Case RMS Resolution⁷ (Automatic or External Arming)

The graphs may also be used to compute errors for Period Measurements. To find the Period error (DP), calculate the frequency of the input signal (F = 1/P) and find the frequency error (DF) from the chart.

Then calculate the period error as:

$$\Delta P = \left(\frac{\Delta F}{F}\right) \times P$$

Graph 2: Agilent 53131A/181A–Worst Case RMS Resolution⁷ (Time or Digits Arming)

Graph 4: Agilent 53132A–Worst Case **RMS Resolution⁷** (Automatic or External Arming)

Graph 5: Agilent 53132A-Worst Case **RMS Resolution⁷** (Time or Digits Arming)

 $\sqrt{2}$ × Trigger Error

Gate Time

'or Period

Frequency Error +

Measurement Statistics

Available Statistics

Mean, Minimum, Maximum, Standard Deviation

Number of Measurements 2 to 1,000,000.

Statistics may be collected on all measurements or on only those which are between the limit bands. When the Limits function is used in conjunction with Statistics, N (number of measurements) refers to the number of in-limit measurements. In general, measurement resolution will improve in proportion to N, up to the numerical processing limits of the instrument.

Measurements

Statistics may be collected for all measurements except Peak Volts and Totalize.

General Information

Save and Recall

Up to 20 complete instrument setups may be saved and recalled later. These setups are retained when power is removed from the counter.

Rack Dimensions (HxWxD)

88.5 mm x 212.6 mm x 348.3 mm

Weight

3.5 kg maximum

Warranty

1 year

Power Supply

100 to 120 VAC \pm 10% -50, 60 or 400 Hz \pm 10% 220 to 240 VAC \pm 10% -50 or 60 Hz \pm 10%

ac Line Selection

Automatic

Power Requirements

170 VA maximum (30 W typical)

Environment

0°C to 55°C operating -40°C to 71°C storage

Remote Interface

GPIB (IEEE 488.1-1987, IEEE 488.2-1987)

Remote Programming Language

SCPI-1992.0 (Standard Commands for Programmable Instruments)

Safety

Designed in compliance with IEC-1010, UL-3111-1 (draft), CAN/CSA 1010.1

EMC

CISPR-11, EN50082-1, IEC 801-2, -3, -4

Radiated Immunity Testing

When the product is operated at maximum sensitivity (20 mVrms) and tested at 3 V/m according to IEC 801-3, external 100 to 200 MHz electric fields may cause frequency miscounts.

Ordering Information

53131A

10 digit/s, 500 ps Universal Counter

53132A

12 digit/s, 150 ps Universal Counter

53181A

10-digit/s RF Counter

Accessories Included

Each counter comes with IntuiLink software, standard timebase, power cord, operating, programming and service manuals.

Manual Options

(please	specify one when ordering)
ABA	US English
ABD	German
ABE	Spanish
ABF	French
ABJ	Japanese
ABZ	Italian
AB0	Taiwan Chinese
AB1	Korean
AB2	Chinese

-	
Opt. 001	Medium-stability timebase
Opt. 010	High-stability timebase
Opt. 012	Ultra-high stability timebase (53132A only)
Opt. 015	1.5 GHz RF input Ch 2 for 53181A only
Opt. 030	3 GHz RF input Ch 3 (Ch 2 on 53181A)
Opt. 050	5 GHz RF input with type N connector Ch 3 (Ch 2 on 53181A)
Opt. 124	12.4 GHz RF input with type N connector Ch 3 (Ch 2 on 53181A)
Opt. 060	Rear-panel connectors*
Opt. 0B0	Delete manual set
Opt. A6J	ANSI Z540 compliant calibration
Opt. 1CM	Rack mount kit (P/N 5063-9240)**

*Opt 060 Configuration Table

53131A/132A

Other Options

Ch1 & Ch2	front & rear (in parallel)
Ch3	Opt. 030 rear only, front plugged
Ch3	Opt. 050/124 front only
Ch2	Opt. 050/124 front only

53181

Ch1	front & rear (in parallel)
Ch2	Opt. 015/030 rear only, front plugged
Ch2	Opt. 050/124 front only

* For racking two side-by-side, order both Lock-link Kit (P/N 5061-9694) and Flange Kit (P/N 5063-9212)

Accessories

34131A	Hard carrying case
34161A	Accessory pouch

🔀 Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/quick

Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

LXI is the US registered trademark of the LXI Consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

United States: (tel) 800 829 4444 (fax) 800 829 4433

Canada: (tel) 877 894 4414 (fax) 800 746 4866

China: (tel) 800 810 0189 (fax) 800 820 2816

Europe: (tel) 31 20 547 2111

Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea:

(tel) (080) 769 0800 (fax) (080) 769 0900

Latin America: (tel) (305) 269 7500

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6755 0042 Email: tm_ap@agilent.com Revised: 09/14/06

Product specifications and descriptions in this document subject to change without notice.

Microsoft® is a U.S. registered trademark of Microsoft Corporation

© Agilent Technologies, Inc. 2006 Printed in USA, November 27, 2006 5967-6039EN

