T-30D VOR/ILS/MB

Ramp Test Set
Operating and Maintenance Manual
S/N Effectivity 597

A	B	C	D	E	F	G	H	I	J	K	L	M
N	O	P	Q	R	S	T	U	V	W	X	Y	Z

T-30D TABLE OF CHANGES

Date	REV	ECO	Page	Description
2-4-97	B		3-3	Correct sensory input keys to 7-13
10-1-97	C		4-5, 4-17	Notes Added on Table 4-2, para. 2.3 and Table 4-3, para 5.0 to set modulation bandwidth
6-10-98	D	1461	5-1, 6-8, 6-9	Added Capacitor from E-1 to GND
7-31-98	E	1470	5-1, 6-8, 6-9	Added Resistor, 100Ω, from E-20 to R3, pin 2
01-26-99	F		4-3	Text Added- Para 1.2, e
			4-5	Text Added- Para 2.3, h, j, I
			4-13	Text Added- Para 1.2, d
			4-17	Text Added- Para 5.2
			4-17	Text Added- Para 5.3, c
			4-23	Text added- Para 5.2, b, d, f
11-30-02	G		All Pages	Complete Overhaul and rewrite of Manual

Table of Contents

Chapter

Page

Table of Changes...
i

List of Illustration... vi
List of Tables... vi

I Introduction
Section A- General Information
1.1 Scope of Manual... 1-1
1.2 Purpose and Function of Equipment... 1-2
1.3 Warranty... 1-2

Section B- Equipment Specifications/Description
1.4 Specifications... 1-3
1.5 Safety Considerations... 1-5
1.6 Abbreviations, Acronyms, and Glossary of Terms... 1-6

II Preparation for Use and Operation
Section A- General Information
2.1 General... 2-1
2.2 Unpacking... 2-1
2.3 Installation... 2-1
2.4 Accessories... 2-1

Section B- Operating Controls, Indicators, and Connectors
2.5 General... 2-3
2.6 Controls, Indicators, and Connectors... 2-3
2.7 AC and Battery Operation... 2-5

Table of Contents (continued)

Chapter Page
2.7.1 AC Operation... 2-5
2.7.2 220 VAC Operation... 2-5
2.7.3 Battery Operation... 2-6
2.8 Omni-Antenna... 2-6
Section C- Operating Instructions
2.9 General Test Procedures... 2-8
2.10 Marker Beacon Tests (MB)... 2-9
2.11 VOR Procedures... 2-10
2.12 Localizer (LOC) Test Procedures... 2-12
2.13 Glideslope (GS) Procedures... 2-14
2.14 Instrument Landing System (ILS) Procedures... 2.16
2.15 Basic Principles of VOR, LOC, GS, and MB... 2-18
2.15.1 Basic ILS Principles... 2-18
2.15.2 Marker Beacon... 2-19
2.15.3 Basic VOR Principles... 2-20
III Theory of Operation
3.1 Overall Theory of Operation... 3-1
3.2 AC and Battery Power... 3-1
3.3 Microprocessor Operation... 3-3
3.4 RF Generation... 3-3
3-5 Modulation... 3-5
IV Maintenance and Servicing
4.1 General... 4-1
4.1.1 General Test Requirements... 4-2

Table of Contents (continued)
Chapter Page

Section A- Routine Maintenance

4.2 General... 4-3
4.2.1 Cleaning Procedure.. 4-3
4.2.2 Inspection of all Connectors, Cables, and Test Set assembly... 4-3
4.2.3 Battery Charging... 4-3
Section B- Calibration and Acceptance Checks
4.3 General... 4-4
4.3.1 Test Equipment Required... 4-4
4.3.2 Initial Test Configuration... 4-5
4.4 Radio Frequency Measurements... 4-6
4.5 RF Power Measurements... 4-6
4.6 Percentage Modulation Measurements... 4-7
4.7 Audio Frequency and Distortion Measurements... 4-8
4.8 VOR Angle Verification... 4-9
Section C- Annual Calibration and Alignment
4.9 General... 4-11
4.9.1 Test Equipment Required... 4-11
4.9.2 Initial Test Configuration... 4-12
4.10 AC Power Tests... 4-13
4.11 Battery Charge... 4-13
4.12 DC Voltage Alignment... 4-14
4.13 Radio Frequency and Power Tests... 4-14
4.13.1 VOR and LOC... 4-14
4.13.2 MB... 4-14
4.13.3 GS... 4-14
4.13.4 Power... 4-15
4.14 Percentage Modulation Tests... 4-16
4.14.1 VOR... 4-16
4.14.2 MB... 4-16
4.14.3 GS... 4-16

Table of Contents (continued)
Chapter Page
4.14.4 Localizer... 4-17
4.14.5 Simultaneous MB and ILS... 4-18
4-15 Audio Frequency and Distortion Verification... 4-18
4-16 VOR Angle Verification... 4-19
V Schematics
System Interconnect... 5-1
RF/Digital... 5-2
RF Switch... 5-6
VI Illustrated Parts Breakdown
T-30D Front Panel Assembly... 6-1
RF Output Cable... 6-5
Digital Board to Panel Cable Assembly... 6-6
Panel, PCB Assembly.... 6-7
RF Switch, PCB Assembly... 6-10
RF/Digital, PCB Assembly... 6-12
APPENDIX
A Test Set Verification and Acceptance Checks Data Sheet A-1
B Annual Calibration and Alignment Data Sheet B-1

List of Illustrations (Figures)

Figure Title Page
1-1 T-30D Ramp Test Set... 1-1
2-1 T-30D Accessories... 2-2
2-2 T-30 Controls, Indicators, and Connector Locations.. 2-3
2-3 Fuse Cartridge... 2-5
2-4 Omni Antenna... 2-7
2-5 Basic HIS/CDI Indicator... 2-8
2-6 "ON COURSE" Illustration... 2-18
2-7 "OFF COURSE" Illustration... 2-19
2-8 Typical MB Display... 2-19
2-9 Typical MB Approach Parameters... 2-20
2-10 Phase Relationship Var and Ref Signals... 2-21
3-1 System Block Diagram.. 3-2
3-2 Power Supply Block Diagram... 3-2
3-3 VHF Block Diagram... 3-4
3-4 UHF Block Diagram... 3-5
3-5 T-30D Ramp Test Set Configuration Chart... 3-7
4-1 T-30D Test Set... 4-5
4-2 T-30D Test Set... 4-12
4-3 A2 S1 Illustration... 4-20

List of Tables

Table	Title	Page
$2-1$	T-30D Accessories and Part Numbers...	$2-2$
$2-2$	Operating Controls and Function...	$2-4$
$2-3$	Antenna Lengths...	$2-7$
$4-1$	Test Set Verification Required Equipment List...	$4-4$
$4-2$	Test Set Switch Configuration...	$4-5$
$4-3$	Test Set Annual Calibration Equipment List...	$4-11$
$4-4$	Test Set Switch Configuration...	$4-12$
$4-5$	Switch S1 Sections...	$4-20$

CHAPTER I

INTRODUCTION

SECTION A

1.1 Scope of Manual

This manual is intended to familiarize the operator with the operating and maintenance procedures necessary to utilize and maintain the T-30D Test Set.

T-30D Ramp Test Set
Figure 1-1

1.2 Purpose and Function of Equipment

The T-30D Ramp Test Set is designed for one-man operation of the VOR, MB, GS, LOC, flight director, and autopilot from the cockpit or flight deck. The unit functions by radiating controllable RF signals directly into the aircraft's antennas. The unit will permit compliance with CAT III periodic ramp check certification.

The T-30D is simple and straightforward in operation and functions primarily as a "go-no-go" test set. Instrumentation in all aircraft has certain established operational tolerances. The purpose of the T-30D is to determine that these tolerances are being met.

1.3 Warranty

The Tel-Instrument Electronics Corporation warrants that each product it manufactures is free from defective material and workmanship for a period of two (2) years subject to the following terms and conditions. Tel-Instrument Electronics Corporation will remedy any such warranted defect subject to the following:

This warranty requires the unit to be delivered by the owner to Tel-Instrument intact for examination, with all transportation charges prepaid to the factory, within two (2) years from the date of sale to original purchaser. Tel-Instrument will solely determine when such defect exists.

This warranty does not extend to any of Tel products which have been subject to misuse, neglect, accident, improper installation, or used in violation of operating instructions. This warranty does not extend to units which have been repaired, calibrated, or altered in any way by a facility that is not approved, in writing, by Tel-Instrument Electronics Corp. to perform such work. This warranty does not apply to any product where the seals or serial number thereof has been removed, defaced or changed, nor to accessories not of our own manufacture.

Repair parts will be made available for a minimum period of five (5) years after the manufacture of this equipment has been discontinued.

This warranty is in lieu of all other warranties expressed or implied and all such other warranties are hereby expressly excluded. No representative or person is authorized to assume for us any other liability or warranty in connection with the sale of Tel's products.

This warranty does not cover or include batteries (batteries have a separate 90 day warranty).
Additional information with regard to the applications and maintenance of this equipment will be available from time to time.

SECTION B

EQUIPMENT SPECIFICATIONS/DESCRIPTION

1.4 \quad Specifications ${ }^{1}$

VOR

Frequency	108.05 MHz $\pm 0.025 \%$
	$108.00 \mathrm{MHz} \pm 0.025 \%$
Power	+17/ $\pm 2 \mathrm{~dB}$
Attenuation $1^{110 \mathrm{~dB} \text { in } 1 \mathrm{~dB} \text { steps }}$	
Modulation	
Audio Frequency	$30 / 9960 \mathrm{~Hz}$
Audio Frequency Accuracy	$\pm 0.01 \%$
AM Depth	$30 \pm 2 \%$
FM Deviation	$480 \pm 30 \mathrm{~Hz}$
Distortion	< 5\%
Indicator Deflection/Bearing	$0-315^{\circ} / \pm 0.1^{\circ}$ in 45° Steps/Variable $\pm 10^{\circ}-15^{\circ}$
Tone	$1020 \mathrm{~Hz} \pm 2 \%$

LOC

[^0]
Glide Slope (GS)

Frequency	$334.70 \mathrm{MHz} \pm 0.0025 \%$
	$334.55 \mathrm{MHz} \pm 0.0025 \%$
Power	+11 $\pm 2 \mathrm{~dB}$
Attenuation	110 dB in 1 dB steps
Modulation	
Audio Frequency	90/150 Hz
Audio Frequency Accuracy	$\pm 0.01 \%$
AM Depth	$40 \pm 3 \%$
Distortion	< 5%
Phase Accuracy	90 to $1150 \mathrm{~Hz} \pm 10^{\circ}$
Indicator Deflection	
On Course	$0.0 \pm 0.01 \mathrm{DDM} / 0.175 \pm .025$ DDM
Variable	-0.175 to + 0.175 DDM
Step	Up and Down; 1 \& 2 Dots
Delete	90 and/or 150 Hz

Marker Beacon (MB)

Frequency	$75.0 \mathrm{MHZ} \pm 0.005 \%$
Power	$+18 \pm 2 \mathrm{~dB}$
Attenuation	110 dB in 1 dB steps
Modulation	
Audio Frequency	$400 / 1300 / 3000 \mathrm{~Hz}$
Audio Frequency Accuracy	$\pm 2 \%$
AM Depth	$95 \pm 4 \%$
Distortion	$<10 \%$

Physical Characteristics

Size	$14.5 \times 9.4 \times 6.5 \mathrm{in}$.	
Weight	18 lbs.	
Power	Internal Battery or external 120/220 VAC 50- 400 Hz	
Environmental	Storage- -51° to $+71^{\circ} \mathrm{C}$ Operating -30° to $+55^{\circ} \mathrm{C}$	

1.5 Safety Considerations

The following are general safety precautions that are not related to a particular test or procedure. These are recommended procedures that all personnel must apply during many phases of operation and maintenance. It is assumed that the operator has general knowledge of electrical theory and the dangers associated with it.

1. When performing any of the tests thoroughly read and understand all procedures before actually performing them.
2. The various front panel connectors, switches, and controls specified can be located by referring to Figure 2-2 on Page 2-3.
3. Take the time to learn the proper operation and function of the Test Set as outlined in Chapters 1, 2, and 3. Through knowledge of the Test Set and its capabilities greatly improves the time it takes to complete the tests.
4. Pay particular attention to NOTES and WARNINGS that may accompany some test procedures.

WARNINGS

Alerts the operator to potential dangers associated with a particular tests. Thoroughly understand the warning before proceeding to prevent a potentially dangerous situation or damage to the Test Set.

NOTES
Provides supplemental information that enhances the test procedure.

5. Observe all standard safety procedures when working with live voltages. The potential for electric shock exists any time the Test Set is removed from its case.
6. DO-NOT service the unit or make adjustments alone. Always be in the presence of another person when working with live voltages.
7. Be familiar with general first aid procedures and CPR (Cardiopulmonary Resuscitation). Contact your local Red Cross for more information.
8. Ensure the test equipment and the tools you utilize are in good operational condition and not damaged in any way.

1.6 Abbreviations, Acronyms and Glossary of Terms ${ }^{2}$

A/A	Air to Air
A/A B	Air to Air Beacon
ac or AC	Alternating Current
A/D	Analog to Digital
AM	Amplitude Modulation
ATC	Air Traffic Control
AUT	Aircraft Under Test
BIT	Built in Test
CW	Continuous Wave
D/A	Digital to Analog
dB	Decibel
dBm	Decibels relative to 1 milliwatt
dc or DC	Direct Current
FAA	Federal Aviation Administration
FAR	Federal Aviation Regulation
FIFO	First In First Out
FREQ	Frequency
ft.	Feet
G/A	Ground to Air
Hz	Hertz
IF	Intermediate Frequency
KHz	Kilohertz
kts.	Knots
LCD	Liquid Crystal Display
LED	Light Emitting Diode
MHz	Megahertz
nmi.	Nautical mile
ns	Nanosecond
PMCS	Preventative Maintenance Checks and Services
PPM	Wulses per Minute
PRF	Unight Under Test
PW	Pulse Repetition Frequency
PWR	Power
RF	Radio Frequency
RMS	Root Mean Square
R/T	Receiver Transmitter
RX	Receiver
TX	Transmitter
VORTAC	VOR and TACAN (co-located)
VOR	Voltage Standing Wave Ratio
VSWR	WOW

[^1]
CHAPTER II

PREPARATION FOR USE AND OPERATION

SECTION A

2.1 General

This Chapter contains all necessary information on the initial unpacking, inspection, and set-up of the T-30D Test Set. From this point forward, the T-30D Test Set will be known as the T-30D, Test Set, or T/S.

2.2 Unpacking

When receiving the T-30D for the first time, ensure that there is no damage to the shipping container. Carefully unpack the unit and save the shipping container in a safe location for shipping or extended storage.

Examine the unit for obvious signs of damage. Check all displays, switches, and connectors before utilizing the Test Set.

If any damage is found, DO NOT use the Test Set until a determination of the Test Sets functions can be assessed. Refer to the procedures outlined in Chapter 4, Section B, Test Set Verification and Acceptance Checks. You may also contact Tel-Instrument Electronics Corp. for assistance.

The T-30D batteries were installed and fully charged when shipped from the factory.

2.3 Installation

The T-30D is ready to use from the factory. There are no installation procedures applicable.

2.4 Accessories

Check that all accessories that you purchased with the Test Set are accounted for. The T-30D comes standard with the following (see Table 2-1 and Figure 2-1):

T-30D Test Set, P/N 90000053

$\#$	NOMENCLATURE	P/N	QTY
1	RF Antenna Assembly	40030003	1
2	Adapter, TNC, RT Angle	48000013	1
3	Power Cable Assembly, AC	75010025	1
4	Foam Insert, Case	31000009	1
5	Case, Universal	64030026	1
6	Manual (not Shown)	90008053	1

T-30D Accessories and Part Numbers

Table 2-1

Figure 2-1

SECTION B

OPERATING CONTROLS, INDICATORS, AND CONNECTORS

2.5 General

This section covers location and function of each control, indicator, or connector. All components are located on the front panel of the Test Set.

2.6 Controls, Indicators, and Connectors

Table 2-2 and Figure 2-2 describes function and location of each control, indicator, and connector.

T-30D Controls, Indicators, and Connector Locations
Figure 2-2

TABLE 2-2 / OPERATING CONTROLS AND FUNCTION		
Index	Description	Function
1	AC POWER	ON/OFF Switch for AC Input power.
2	AC Input	Connector for AC Line Cord.
3	AC	Fuses for AC Line Power/ $1 / 4$ A SB Fuses.
4	AC Power "ON" Indicator	Light illuminates with AC Power "ON".
5	AC Input	120 V or 220 VAC Select fuse drawer.
6	RF OUTPUT	RF Output connector for selected Antenna.
7	Energized Light	Illuminates when Test Set is turned "ON".
8	TEST/FAIL STATUS	Indicates Self Test Status and battery condition.
9	TEST SET POWER	Selects ON/OFF condition of Test Set.
10	$\begin{aligned} & \hline 108.10-334.70 \\ & 108.15-334.55 \\ & \hline \end{aligned}$	Selector Switch for GS and LOC frequency pairing.
11	DELETE 90~	Momentary toggle switch, deletes 90 HZ modulation
12	DELETE 150~	Momentary toggle switch, deletes 150 Hz modulation
13	GS	Allows deviation from Glide slope path. OC = On Course +1 = One Dot Above +2 = Two Dots Above -1 = One Dot Below $-2=$ Two Dots Below
14	VAR	With the 108.10/334-70, 108.15/334.55 switch in the $\mathbf{1 0 8 . 1 0}$ position, allows continuous variation above or below the on Course signal.
15	LOC	Allows deviation from the LOC path. OC = On Course L1 = One Dot Left L2 $=$ Two Dots Left R1 = One Dot Right R2 = Two Dots Right
16	VAR	With the 108.10/334-70, 108.15/334.55 switch in the 108.15 position, allows continuous variation Left or Right of the on Course signal.
17	FUNCTION	Selects Test Set Operating Modes: ILS, GS, LOC, VOR, MB
18	ATTENUATOR	Controls RF output of Test Set in 1 dB steps.
19	ATTENUATOR	Controls RF Output in 10 dB steps.
20	VOR	With FUNCTION switch in VOR, selects bearing of aircraft to VOR Station in 45° increments from $0-315^{\circ}$. Permits deletion of the REF 0, VAR $0,30 \mathrm{~Hz}$, or VOR signals.
21	VAR ON/OFF	On/Off switch for the VOR VAR control.
22	VAR	Provides continuous variation for ± 10 left/right of VOR bearing.
23	108.00/108.05	VOR Frequency selection.
24	1020 ~ VOR	Momentary switch enabling the 1020 Hz VOR tone.
25	1020 ~ LOC	Momentary switch enabling the 1020 Hz LOC tone.
26	MB	Selects Marker Beacon Signals: 400 Hz (Blue Outer Marker), 1300 Hz (Amber Middle Marker), and 3000 Hz (White Inner Marker)
27	SIMULTANEOUS MB	Provides Simultaneous MB and ILS tests.
28	DC	Fuses for DC Power ($5 \mathrm{~A} / 32 \mathrm{~V}$).

2.7 AC and Battery Power Operation

Review the following procedure to maintain the Test Set battery in a fully charged state. It is recommended that you charge the battery fully to ensure that all tests can be completed without interruption. If the battery drains during extended operation, the operator may continue testing by utilizing AC Power.

2.7.1 AC Operation

1. Disengage the two case latches and open the cover.
2. Remove the supplied AC Power cord that was supplied with the Test Set.
3. Connect one end to the AC INPUT connector and the other end into a suitable 120 VAC receptacle.
4. Set the AC POWER rocker switch to "ON" (-). The AC Power "ON" LED should illuminate. Verify the TEST/FAIL STATUS LED briefly illuminates then extinguish. If the TEST/FAIL STATUS LED remains lit, this indicates that the Test Set has failed the Self Test. If the LED blinks, this condition indicates the battery voltage is low.

2.7.2 220 VAC Operation

The T-30D may be operated utilizing either 120 or 220 VAC. Before using 220 VAC, the operator must configure the fuse drawer.

WARNING
Failure to properly configure the Test Set for 220 VAC operations before use may result in severe damage to the Test Set.

1. Remove the FUSE DRAWER from the Test Set by releasing the Tab and pulling the cartridge straight out.
2. Pull the bottom fuse holder from the rear of the cartridge, rotate, and reinstall back in the cartridge ensuring that $\mathbf{2 2 0}$ is viewable through the front window.

Configured for 120 VAC

Configured for 220 VAC Fuse Cartridge

Figure 2-3

2.7.3 Battery Operation

The Battery allows the operator to utilize the Test Set without an AC power cord connected. The Test Set contains a built in charger that will recharge the battery from a 120 or 220 VAC (when properly configured) source. With AC power connected and the Test Set in use, the T-30D will begin to regain its charge.

Several features are built into the Test Set to provide maximum battery life.

1. When the Test Set is turned "ON", the Test/Fail LED indicator will illuminate and at the completion of the Self-Test, extinguish.
2. A timing circuit will automatically turn "OFF" the Test Set after 15 minutes of operation (if the test set is being charged, it will not turn "OFF"); the Test Set is also turned "OFF" whenever the cover is closed on the test set.
3. During battery operation, when the TEST/FAIL STATUS indicator begins to blink, there are approximately 15 minutes of operating time left. The battery should be recharged or the Test Set plugged in to a suitable AC power source to prevent interruption of tests.
4. The Test Set will continually monitor the battery voltage; if the battery voltage drops to 10 volts, the Test Set will automatically turn OFF.

The Test Set will take approximately 16 hours to fully recharge, once the LED begins to blink. The Test Set may remain plugged in once charging is completed. No adverse effects will occur. Due to the Memory-Effect of the batteries, it is not recommended that the T/S battery be fully discharged.

2.8 Omni-Antenna

Most navigation receiver checks will be performed on the ramp utilizing the supplied OmniAntenna. The Omni-Antenna has been designed in calibrated segments for the correct bandwidth of the frequencies to be used. By extending or collapsing the antenna, dependent on the frequency being tested, the antenna will be properly tuned.

In order to perform ramp testing Antenna to Antenna, perform the following steps:

1. Remove the Omni-Antenna from the Test Set cover. Connect it to the RF OUTPUT connector located on the front panel of the Test Set.
2. Use Table 2-3 and Figure 2-4, on the following page, and fully extend, then retract the antenna to the correct length for the frequency being tested. The Table and correct lengths are also printed on the inside cover of the Test Set.

Omni Antenna
Figure 2-4

FREQUENCY TESTED	
ANTENNA LENGTH	
	Fully Extended
Marker Beacon	Top three sections retracted $\left(281 / 2^{\prime \prime}\right)$
VOR	Top three sections retracted $\left(281 / 2^{\prime \prime}\right)$
LOC	Top five sections retracted $\left(191 / 2^{\prime \prime}\right)$
GS	Top three sections retracted $\left(281 / 2^{\prime \prime}\right)$
ILS	

Antenna Lengths
Table 2-3
3. Most tests can be performed while the operator is in the cockpit. Place the Test Set 10-30 ft. from the Unit Under Test (UUT) antenna. Due to the many types of aircraft and their configuration, the operator may need to move the antenna to a different location for each type. Landing gear doors, external fuel tanks and ground support equipment may interfere with the Test Set signals. For accurate results, Line-of-Sight to the antenna being tested is recommended. Relocate the Test Set at a various positions and re-test if test results are erroneous or inaccurate.

SECTION C

OPERATING INSTRUCTIONS

2.9 General Test Procedures

The following tests are not meant to replace the testing criteria required for your particular model of equipment. They are general testing procedures to assist the operator in properly utilizing the T-30D T/S.

All of the following tests are described utilizing the T-30D Test Set. It is assumed the operator has a detailed knowledge of Avionics Systems and the UUT (Unit Under Test) test requirements. Refer to Table 2-3 for correct antenna lengths for each test performed. Figure 2-5 illustrates a typical HSI/CDI indicator for reference when conducting VOR/LOC/ILS and GS Test.

Figure 2-5

2.10 Marker Beacon Tests (MB)

Verify proper operation of an aircraft MB receiver as follows:

1. Connect the Omni-Antenna to the RF OUTPUT connector on the Test Set and fully extend the antenna (Table 2-3).

It may be necessary to extend the Antenna out of the Cockpit door or window for MB operation.
2. Turn "ON" the MB receiver.
3. Set FUNCTION Switch to MB, ATTENUATOR dials to $\mathbf{0}$.
4. Set MB Switch to 400. Blue (outer) marker lamp shall light and a 400 Hz tone shall be audible from the cabin speaker or intercom system.
5. Set MB Switch to 1300. Amber (middle) marker lamp shall light and a 1300 Hz tone shall be audible from the cabin speaker or intercom system.
6. Set MB Switch to $\mathbf{3 0 0 0}$. White (inner) marker lamp shall light and a 3000 Hz tone shall be audible from the cabin speaker or intercom system.
7. Gradually increase signal attenuation with the ATTENUATOR knobs until the Marker Beacon light extinguishes. This will determine the Marker Beacon receiver sensitivity level.
8. Set both ATTENUATOR dials to $\mathbf{0}$.

NOTE

2.11 VOR Procedures

Verify proper operation of an aircrafts VOR receiver as follows:

1. Connect the Omni-Antenna to the RF OUTPUT connector on the front panel of the Test Set and extend it fully, then retract it three sections (Table 2-3).
2. Set VOR frequency Select Switch to $\mathbf{1 0 8 . 0 0}$.
3. Turn "ON" the VOR receiver and tune it to 108.00 MHz . Set the HSI/BDI to a 0° VOR bearing.
4. Set FUNCTION Switch to VOR and the VOR Switch to 0°. Vertical pointer shall center and flag shall be retracted.

Indicator shown with Deviation Bar centered and course at 000 degrees.
5. Repeat step 4 at the $45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}$, and 315° VOR Switch positions. For each position, make sure that the corresponding bearing is shown on the VOR display. The vertical pointer shall center and the flag shall be retracted at each position.
6. With the VOR Switch at 270° and the VOR display or Heading Bug set to 315°, set the VAR Switch "ON". Slowly rotate VAR knob from the left stop to the right stop. Observe movement of the indicator vertical pointer. Vertical pointer shall move from the two-dot LEFT position to the two-dot RIGHT position in response to the movement of the VAR knob.

Indicator represents VOR variable fully CCW (2 Dots Left) and course at 270°
7. Set VAR Switch "OFF".
8. Set VOR Switch to DELETE REF Ø. Vertical pointer shall move away from center position and the flag shall appear.

Indicator represents VOR flag in view when VOR switch set to DELETED REF Ø.
9. Set VOR Switch to $27 \mathbf{0}^{\circ}$ vertical pointer shall center and flag shall retract.
10. Repeat Steps 8 and 9 for the DELETE VAR Ø, DELETE 30 Hz , and DELETE VOR positions of the VOR Switch. The same results shall be observed.
11. Momentarily press the $\mathbf{1 0 2 0}$ ~ VOR Switch. A 1020 Hz tone shall be heard from the cabin speaker or intercom.
12. Reduce the T-30D output signal strength with the ATTENUATOR knob. Ensure the flag hides and appears at the prescribed limits as provided by the manufacturer of your equipment.
13. Repeat steps $2-12$ at the $\mathbf{1 0 8 . 0 5}$ position of the VOR frequency Select Switch. The same results shall apply.
14. Set both ATTENUATOR dials to 0 .

2.12 LOCALIZER (LOC) Test Procedures

WARNING

When conducting tests with the aircrafts autopilot engaged, any variation of the aircrafts controls may move the associated control services. Use caution to ensure that all personnel and ground support equipment are clear of the control services.

Verify proper operation of aircrafts LOC receiver equipment as follows:

1. Connect the Omni-Antenna to the RF OUTPUT connector on the front panel of the Test Set and extend it fully, then retract it three sections (Table 2-3).
2. Set ILS Frequency Select Switch to 108.10/334.70.
3. Turn on the LOC receiver. Tune for an operating frequency of 108.10 MHz .
4. Set the FUNCTION Switch to LOC.
5. Set the LOC Switch to OC (On Course). Vertical pointer shall center and flag shall be retracted.

Indicator represents LOC, On Course
6. Set LOC Switch to R1. Vertical pointer shall show an One-Dot RIGHT deflection. Turn LOC Switch to R2. Vertical pointer shall show a Two-Dot RIGHT deflection.
7. Set LOC Switch to L1. Vertical pointer shall show an One-Dot LEFT deflection. Turn LOC Switch to L2. Vertical pointer shall show a Two-Dot LEFT deflection.

8. Set LOC switch to VAR. Rotate the VAR knob from the LEFT to RIGHT stop. Vertical pointer shall move from the LEFT two-dot position to the RIGHT two-dot position in response to the movement of the VAR knob.
9. Set LOC Switch to OC. Reduce the T-30D output signal strength with the ATTENUATOR knob. Verify that the flag appears IAW manufacturer's specifications.
10. Set both attenuator dials to $\mathbf{0}$. Verify that the LOC Switch is at $\mathbf{O C}$ and that vertical pointer is centered.
11. Momentarily press DELETE 90 ~ Switch. Vertical pointer shall swing full LEFT and the flag shall be visible.

12. Momentarily press DELETE 150 ~ Switch. Vertical pointer shall swing full right and the flag shall be visible.
13. Momentarily press $\mathbf{1 0 2 0}$ ~ LOC Switch. A 1020 Hz tone shall be heard from the cabin speaker or intercom.
14. Repeat steps 2-13 with the ILS frequency select switch at 108.15/334.55. The same results shall be observed.
15. Set both ATTENUATOR dials to 0 .

2.13 Glide Slope (GS) Procedures

WARNING

When conducting tests with the aircrafts autopilot engaged, any variation of the aircrafts controls may move the associated control services. Use caution to ensure that all personnel and ground support equipment are clear of the control services.

Verify proper operation of the aircraft GS receiver equipment as follows:

1. Connect the Omni-Antenna to the RF OUTPUT connector on the front panel of the Test Set and extend it fully, then retract it five sections (Table 2-3).
2. Set ILS frequency Select Switch to 108.10/334.70.
3. Turn on the GS receiver. Tune for an operating frequency of 334.70 MHz .
4. Set the FUNCTION Switch to GS.
5. Set the GS Switch to OC. Horizontal pointer shall center and flag shall be retracted.

GS Pointer is Centered and On Course (OC).

6. Set GS Switch to +1. Horizontal pointer shall show a One-Dot UP deflection. Turn GS switch to +2. Horizontal pointer shall show a Two-Dot UP deflection.
7. Set GS Switch to -1. Horizontal pointer shall show a One-Dot DOWN deflection. Turn GS Switch to -2. Horizontal pointer shall show a Two-Dot DOWN deflection.
8. Set GS Switch to VAR. Rotate the VAR knob from the left to right stop. Horizontal pointer shall move from the DOWN Two-Dot position to the UP TwoDot position in response to the movement of the VAR knob.

GS Pointer indicates

 full Two-Dot UP Deflection
9. Set GS Switch to OC. Reduce the T-30D output signal strength with the ATTENUATOR knob. Verify that the flag appears IAW manufacturer's specifications.
10. Set both attenuator dials to $\mathbf{0}$. Verify that the GS Switch is at $\mathbf{O C}$ and that horizontal pointer is centered.
11. Momentarily press DELETE 90 ~ Switch. Horizontal pointer shall swing full up and the flag shall be visible.
12. Momentarily press DELETE 150 ~ Switch. Horizontal pointer shall swing full down and the flag shall be visible.
13. Repeat steps 2-13 with the ILS frequency select switch at 108.15/334.55. The same results shall be observed.
14. Set both ATTENUATOR dials to 0 .

2.14 Instrument Landing System (ILS) Procedure

WARNING
When conducting tests with the aircrafts autopilot engaged, any variation of the aircrafts controls may move the associated control services. Use caution to ensure that all personnel and ground support equipment are clear of the control services.

Verify proper operation of the aircraft ILS receiver equipment as follows:

1. Connect the Omni-Antenna to the RF OUTPUT connector on the front panel of the Test Set and extend it fully, then retract it three sections (Table 2-3).
2. Set ILS frequency select switch to 108.10/334.70.
3. Turn on the LOC/GS receiver (s). Tune for a LOC operating frequency of 108.10 MHz (GS 334.70 MHz).
4. Set the FUNCTION switch to ILS.
5. Set both LOC and GS switches to OC. Vertical and horizontal pointers shall center and both flags shall be retracted.

Glide Slope and Localizer Pointers indicate On Course (OC).
6. Set both LOC and GS Switches to VAR. Rotate the VAR knob from the left and right stop. Vertical pointer shall move from LEFT Two-Dot position to the RIGHT Two-Dot position in response to the movement of the VAR knob. Simultaneously, the horizontal pointer shall move from the DOWN Two-Dot position to the UP Two-Dot position.

7. Repeat steps $2-6$ with the ILS frequency select switch at $108.15 / 334.55$. The same results shall be observed.
8. Set both ATTENUATOR dials to 0 .
9. Simultaneous MB - At any time during ILS operation, the MB may be turned on by setting the Simultaneous MB "ON" switch.

2.15 Basic Principles of VOR, LOC, GS, and MB

2.15.1 Basic ILS Principles

ILS (Instrument Landing System) was introduced in the 1930's. The system consists of antennas and transmitters, located at the end of the runway at centerline, providing horizontal, vertical, and distance guidance. The system is broken down into: LOC-horizontal control, GS- vertical control, and MB- distance control.

The localizer transmitter utilizing the VHF navigation band from $108.10-111.95 \mathrm{MHz}$ provides horizontal guidance (LOC), using every odd 100 KHz position.

The vertical transmitter utilizing the UHF navigation band from $329.15-335.00 \mathrm{MHz}$ provides the vertical guidance (GS).

The LOC and GS Frequencies are typically paired; where as- when you select the appropriate LOC frequency, the ILS receiver will automatically select the paired GS frequency.

Marker Beacon transmitters transmit on a frequency of 75 MHz and is not paired with the ILS receiver.

Both the LOC and GS Transmitters transmit a carrier modulated RF with 90 and 150 Hz signals. When an aircraft is receiving the signals and is receiving equal amounts of the 90 and 150 Hz modulation, the aircraft is "On Course", as depicted in Figure 2-6.

If the aircraft is receiving a percentage of modulation greater than the other, the receiver will display an offset either Left/Right or Above/Below "On Course", as shown in Figure 2-7.

Illustrates an "On Course" aircraft, receiving equal amounts of 90 and 150 Hz modulation.

Figure 2-6

Illustrates an aircraft receiving a higher percentage of LOC 150 Hz modulation, and GS 90 Hz modulation. The Indicator will reflect left and above "On Course" when flying "TO" the VOR station.

Figure 2-7

2.15.2 Marker Beacon

The Marker Beacon provides distance to the airport runway. There are normally three transmitters, Outer Marker, Middle Marker and Inner Marker. All three transmit at 75 MHz , modulated at different frequencies for identification. The Inner marker is modulated at 3000 Hz , Middle at 1300 Hz , and the Outer at 400 Hz . As the aircraft flies over the transmitters, located at the approach end of the runway, the MB receiver will receive the signal and dependent on the modulation (Figure 2-9), illuminate the appropriate light on the panel (Figure 2-8).

Typical MB Display
Figure 2-8

Typical MB Approach Parameters
Figure 2-9

2.15.3 Basic VOR Principles

VOR (Variable Omni Range) is a VHF navigational aid utilized to determine the bearing of an aircraft to a designated point. The system comprises of a fixed ground station and the airborne receiver. The ground station transmits two signals, a reference and a variable signal. Within line of sight of a VOR ground station, the aircraft receiver will detect, then compare the phase relationship between the reference and variable signals and translate it to a bearing from the ground station.

The basic principle of VOR is the measurement of time (phase) difference between the two signals.

The reference signal is a 30 Hz signal which frequency modulates (FM) a 9960 Hz subcarrier. The frequency modulated signal is then used to amplitude modulate (AM) a RF carrier.

The variable signal uses the same carrier frequency but no modulation from the transmitter. The signal is modulated at 30 Hz by the rotation of the antenna.

The variable 30 Hz AM signal and the 30 Hz FM reference signal are timed (by the rotation of the antenna) to be in phase at a relative position of due north of the VOR station (see figure 2-10).

Phase Relationship between Variable and Reference Signals
Figure 2-10

Using Figure 2-10, Note at due North, the signals are IN phase. At due East - the signals are 90° out of phase, due South - 180° out of phase, due West -270° out of phase. The VOR receiver in the aircraft, measures this phase difference and displays the information as the correct bearing TO or FROM the ground station.

CHAPTER III

THEORY OF OPERATION

3.1 Overall Theory of Operation

The T-30D provides VOR, LOC, GS, MB signal generation, as shown in Fig. 3-1. The VOR and LOC RF carriers are generated using a phase locked loop synthesizer, which is capable of generating frequencies within the entire VHF navigation band. The GS RF carrier is generated with a similar phase locked loop and is capable of generating all GS frequencies. The MB RF carrier is generated with a crystal oscillator.

FIGURE \#	DIAGRAM
$5-1$	System Interconnect
$5-2$ to $5-5$	RF and Digital

3.2 AC and Battery Power

As shown in Fig. 3-2, AC power is supplied thru the panel connector and thru fuses to the full wave bridge rectifier. The AC power is controlled by the AC Power switch and AC Input voltage select. When the Test Set Power switch is "OFF", the output from the bridge rectifier is supplied thru fuses to charge the battery pack. When the Test Set Power switch is "ON", the unit becomes operational. To preserve battery power, if no controls are activated, the unit will turn off after 15 minutes. To signal low battery voltage, the TEST/FAIL STATUS LED will begin to blink with approx. 15 minutes of operating time remaining. After this time, the test set will automatically be disabled until the battery is recharged.

The T-30D has a 10 -cell series battery pack that provides 12 volts of DC. The capacity of the battery pack is 4 amp hours. The built in charger recharges the battery from the AC source. The battery will be charged with only the AC switch "ON". The Test Set can be operated when the battery is being charged.

Because the recharge process is not a 100% efficient process, some energy delivered to the cells will generate oxygen and heat. If charging is done at less than 10% of the battery capacity (400 ma), the oxygen will recombine in the cell. If the charge rate is greater than 400 ma , the oxygen will accumulate and result in a capacity limitation known as Memory Effect. The Memory Effect is reversible by discharging the battery to a level of 10 volts and then recharging. The battery should never be discharged lower than 9.5 volts or the number a charge cycles (total useful life) will be greatly reduced.

The internal battery charger provides 400 ma of current to the battery that, after 16 hours, will completely charge a fully discharged battery pack. The charger can be left on indefinitely without generating the memory effect. Therefore, it is recommended to keep the test set on charge when not in use.

System Block Diagram

Figure 3-1

Power Supply Block Diagram
Figure 3-2

3.3 Microprocessor Operation

The T-30D microcomputer uses an 80 C 31 processor, U3, operating at 12 MHz . The processor RAM is U 2 while the PROM is $\mathrm{U} 5 . \mathrm{U} 1$ is used for address expansion. The computer monitors the front panel controls, determines the mode of operation, and thus controls the RF frequencies and levels, the modulation tones to be generated and the necessary phase angles when used. The computer also interfaces with an IEEE-488 bus in units fitted with this option.

The front panel switches are scanned using the input and output ports from the microprocessor. There are 6 driver lines, key 1 through key6, which are latched into U10. These outputs drive the function switches on the front panel and the switch closures are sensed through the 6 inputs key 7 through key 13.

The microprocessor programs the basic mode of operation of the unit by providing analog switching and the partitions of the look-up PROM used to generate the modulation voltages. The processor also programs the frequency of the synthesizers and the output RF levels. The computer also programs the VOR bearing, both fine and coarse, the percentage of modulation for the LOC and the GS.

The necessary mathematics to convert the front panel controls from the DDM to percentage modulation or the omni bearing to coarse and fine bearing is performed by the microprocessor.

3.4 RF Generation

The RF signal generation involves two phase locked loop synthesizers for the VOR, LOC and GS signal carriers. For the marker carrier a single-frequency, crystal controlled generator is used.

As shown in Fig. 3-3, for the VHF navigation frequencies required of the VOR and localizer, Q3 is the VCO, which is followed by an attenuator to provide isolation from the first buffer amplifier, U66, followed by a second buffer amplifier, U67. The output of the second buffer amplifier is rectified using the Schottky diode CR18 and compared to a reference voltage generated with another Schottky diode, CR19. The output of the feedback amplifier U70 is fed to the base of the transistor, Q4. This transistor adjusts the current to the amplifier, U67, thus changing the gain of this amplifier. The amplitude of the rectified signal from CR18 is adjusted to be equal to and of opposite sign as the current through R185, which sets the RF level at the output of U67.

Having a constant RF voltage input to the modulator permits accurate amplitude modulation from the balanced mixer, U68. The output of the modulator is passed through a low pass filter to eliminate the higher order harmonics created in the balanced modulator, to amplifier U21 and an isolation resistor, R178.

The UHF synthesizer, Fig. 3-4 is very similar; the main difference being the glide slope frequency range is small compared to the VHF NAV band of frequencies. This is evident as the main difference between the VHF and UHF synthesizers, is the VCO.

The VCO for the UHF synthesizer is negative resistance oscillator using Q1. An attenuator follows the VCO, two buffer amplifiers and a feedback level control adjust as the VHF synthesizer. The output of the second buffer amplifier feeds the modulator.

The marker beacon RF signal is generated with a crystal controlled oscillator and modulator, U49. This IC provides a 5th overtone crystal oscillator and a Gilbert cell balanced modulator which is used as an AM modulator. The output of the modulator is amplified and passed through a simple low-pass filter and a 220 -ohm isolation resistor.

The output signal from the VHF, UHF, and MB are combined and attenuated in 1 dB steps with two PIN diode attenuators providing 1, 2, 4, 5, 10, and 20dB steps, for a total of 42 dB of attenuation. The output of PIN diode attenuators is amplified by the power amplifier U73. Relay attenuators provide two additional 34 dB steps after the power amplifier, bringing the total attenuation to 110 dB .

The PIN diode and relay attenuators are controlled by the computer and are set by the front panel attenuation switches.

VHF Block Diagram
Figure 3-3

UHF Block Diagram
Figure 3-4

3.5 Modulation

The modulation waveforms are generated using digital sampling techniques and a look-up table, U35, which is sequentially addressed. The output of the look-up table ROM feeds several D/A converters that create the analog output to feed the modulators. The basic cycle time of the lookup table is $1 / 30$ th of a second. There are 2048 samples per cycle, which implies that the addresses change at a 61.44 kHz rate.

The SINE PROM has look-up tables to generate all of the required sine frequencies. In the VOR mode of operation, the PROM provides one cycle ($1 / 30 \mathrm{sec}$) of 30 Hz variable phase, 9960 Hz IDENT tone, and a 9960 Hz un-modulated frequency for VOR delete modes test.

In the ILS mode of operation, the PROM provides 3 cycles of $90 \mathrm{~Hz}, 5$ cycles of 150 Hz tones for GS and LOC. It also provides 1020 Hz IDENT tone for the LOC when selected by the operator. The 90 and 150 Hz tones are loaded to separate LOC and GS D/A converters. The D/A converters and amplifiers set the amplitude of these tones

In the MB mode of operation, the PROM provides 13.5 cycles of $400 \mathrm{~Hz}, 43.5$ cycles of 1300 Hz , or 100 cycles of 3000 Hz , as selected by the operator. The MB tone generation is accomplished differently from the VOR and ILS tones. Because two of the three MB frequencies are not exact multiples of 30 Hz , as the VOR, LOC, and GS tones are, the look-up table is read twice for each MB tone and the polarity of the output is reversed between the two readings. This effectively reduces the sample rate from 30 to 15 times per second.

For the 3000 Hz MB tone, 100 complete cycles are stored and retrieved 30 times per second which produces an exact 3 kHz output. For the 1300 Hz tone, 43.5 cycles are stored and retrieved
at a 30 Hz rate. Since the polarity is changed every other sequence, the one-half cycle at the end of one sequence is followed by a reverse polarity cycle at the beginning of the next cycle and results in a continuous sine wave. Sampling 43.5 cycles at 30 times a second, results in a frequency of 1305 Hz ; and sampling 13.5 cycles at 30 times a second results in a frequency of 405 Hz . Both of these tones are within ICAO spec.

U28, U29 and U30 form a 12-bit binary counter. Eleven bits of the counter feed a binary adder consisting of U31, U32 and U33. The output of the adder feeds the address input of the look-up PROM, U35. The adder allows the VOR coarse bearing to be added to the address of the PROM when reading the 30 Hz variable signal from the look-up PROM. When operating in the VOR mode, the VOR coarse bearing is added to the PROM address only when the output control of U 15 and U 16 is low. When the output control is at logic 1, the pull down resistors cause the B input to the adder, U31, U32 and U33, to be all zero and thus the address is the same as the state of the address counters U28, U29 and U30.

On all other modes, the VOR coarse bearing, VCBO through VCB10, is zero, and the address of the EPROM is the same as the address counter, regardless of the state of the output control.

The D/A converters have storage latches and the output of the look-up PROM, that represents the digital amplitude of the waveform, is latched into five D/A converters. The 61.44 kHz address clock is further divided into 4 periods. U40 contains four of the five D/A converters and receives the data for the LOC 90 Hz in section A, LOC 150 Hz in section C, GS 90 Hz in section B and GS 150 Hz in section D . There are five D/A converters and only 4 sub-periods for each address. In the ILS modes of operation, where all 5 D/A converters are used, the 90 and 150 Hz waveforms are latched into two D/A converters each of the first two sub-periods while the 1020 Hz IDENT or one of the marker tones are latched during the remaining two periods.

In the VOR mode, a 30 Hz sine function is latched into the D/A converter U39-A, while a 9960 Hz frequency modulated reference waveform is latched into U40 section B and the 1020Hz IDENT is latched into sections A.

In the ILS modes, the 90 Hz sine function is latched into U40 A and B while the 150 Hz tone is latched into U40C and D. The 1020 Hz IDENT tone or the MB tone, depending on whether the MB or IDENT tone is selected, is stored in U39-A. When the MB is not activated, U39-A receives the 1020 Hz IDENT tone that is routed to the VHF modulation for the localizer through U42 and R43.

The VOR fine bearing is created by using the second latch available in U39. In U40, the second latch is effectively disabled by permitting the latch to remain transparent. The 61.44 kHz address clock is divided into 16 sub clocks. By delaying, the strobe pulse to the second latch by multiples of $1 / 16$ th of the 61.44 kHz period the address clock the phase angle between the reference and variable can be adjusted. Since each 30 Hz cycle is divided into 2048 samples, each sample represents 0.176 degrees, using the $1 / 16$ th clock period, the fine adjustment can be made with 0.011-degree resolution.

The reference voltage for all four D/A converters in U40 can be controlled by the D/A converter, U8. U40 receives the samples for localizer and glide slope 90 Hz and 150 Hz tones. Therefore, the DDM's of the GS and LOC may be set under control of the computer.

T-30D Ramp Test Set Configuration Chart
Figure 3-5

CHAPTER IV

MAINTENANCE AND SERVICING

4.1 General ${ }^{1}$

The use of the current generation of electronic components has dramatically decreased the cost of maintaining and calibrating test equipment. Tel-Instrument Corp. has recommended an annual calibration interval and periodic checks to keep the T-30D Test Set in operational condition. Performing preventative maintenance checks of the Test Set and Test Set Verification and Acceptance Checks if a failure is suspected will reduce down time by detecting and correcting potential problems at their onset. This chapter is broken down in four sections:

1. Routine Maintenance (Section A).
2. Test Set Verification and Acceptance Checks (Section B).
3. Annual Calibration and Alignment (Section C).
4. Battery Replacement (Section D).

Routine Maintenance: By routinely cleaning and inspecting the T-30D Test Set, the operator will be able to reduce down time due to unexpected failures. Routine Maintenance, as outlined in Section A, consists of checks and observations performed to maintain the Test Set in a serviceable and ready condition. They should be accomplished each time the Test Set is utilized and after extended storage.

Test Set Verification and Acceptance Checks: If during normal operation, a failure is suspected or unusual or erratic results are displayed, perform the procedures as listed in Section B. By conducting and verifying the Test Sets condition. The operator will be able to determine if the Test Set is malfunctioning or the UUT is at fault. Periodic checks will also alert the operator to possible problems and ensure the Test Set is in full operational condition before it is used.

Annual Calibration and Alignment: A full Calibration and Alignment of the Test Set shall be performed under the following conditions:

1. Tel-Instrument Corporation recommends an Annual Calibration \& Alignment to ensure accurate test results and improved performance.
2. If any failure occurs or is suspected during Routine or Test Set Verification Checks, a full Calibration and Alignment shall be performed.
3. If any major assembly is replaced.
4. If during normal operation, the Test Set fails to meet any specification outlined in Chapter 1, Section B.
[^2]
4.1.1 General Test Requirements

1. All measurements and tests shall be performed at the prevailing conditions of temperature, humidity and barometric pressure.
2. If a test set fails to meet the test specified herein, the calibration procedure outlined in Chapter 4, Section C, should be followed.
3. All test instruments and test equipment shall have an accuracy at least four times better than the tolerance to be measured. When conditions prohibit such instrumentation, or only minimum or maximum values are specified, the measurement limit shall be adjusted to compensate for the calibration limit of uncertainty.
4. Instrument calibration shall be in accordance with MIL-C-45662A.
5. The Test Set shall be permitted to warm up for a period of 10 minutes prior to performing any of the following tests.
6. The Initial Test Set Up Procedure provides the steps necessary prior to performing any of the tests.
7. Record the test results on the data sheets (Appendix's A \& B) when each test procedure has been completed, the summary sheets will comprise the test report for that particular unit.

SECTION A

ROUTINE MAINTENANCE

4.2 General

By routinely cleaning and inspecting the T-30D Test Set, the operator will be able to reduce down time due to unexpected failures. Routine Maintenance consists of checks and observations performed to maintain the Test Set in a serviceable and ready condition. They should be accomplished each time the Test Set is utilized and before extended storage.

Routine maintenance consists of the following:

1. Cleaning of the T-30D Test Set exterior case.
2. Inspection of all connectors, cables and the Test Set assembly.
3. Battery Charging.

4.2.1 Cleaning Procedure

Keep the Test Set clean by removing any loose dirt, mildew or mild corrosion with a soft cloth moistened with warm water and a mild detergent. Do not spray any cleaning detergent or water directly on the Test Set. Ensure to dry off the Test Set with a Lint free cloth to remove all deposits and remaining cleaning solution. Strong cleaners and chemicals should be avoided to prevent damage to the display and switches.

4.2.2 Inspection of all Connectors, Cables and Test Set Assembly

By inspecting the cables, connectors, and the Test Set periodically, potential inaccurate test results can be alleviated.

1. Check each antenna supplied with your Test Set for obvious signs of rust, dents and loose parts.
2. Inspect the Test Set case for signs of abuse. Large dents and cracked displays may render the Test Set inoperable.
3. Toggle and push each switch for proper operation. Sticking switches may result in erroneous test results.
4. Inspect for loose bolts, nuts, and screws; tighten if necessary.
5. Periodically clean all exposed connectors with an approved avionics cleaner.

4.2.3 Battery Charging

Charge the battery IAW the procedures outlined in Section II, paragraph 2.7.3.

SECTION B
 TEST SET VERIFICATION AND ACCEPTANCE CHECKS

4.3 General

These procedures will be performed on an UNOPENED Test Set by measuring inputs/outputs. If the Test Set results are not within tolerances, the Test Set will require a full alignment as outlined in Section C.

4.3.1 Test Equipment Required

The following support equipment (or their equivalent) is necessary to perform the Test Set Verification and Acceptance Checks of the T-30D Test Set.

NOMENCLATURE	
DESIGNATION	
Universal Counter	HP 5335A
RF Power Meter	HP 432A
Spectrum Analyzer	HP 8558B
Modulation Meter	Boonton Electronics 82AD
Digital Voltmeter	Fluke 8000A
Oscilloscope	Tektronix 2235
DC Power Supply	$0-12 \mathrm{~V}$ @ 1 amp
Autotransformer	$115 \mathrm{~V} / 230 \mathrm{~V}, 50-60 \mathrm{~Hz}, 10 \mathrm{~W}$ min.
Zifor: Radial Standard	Collins 478A-3
Distortion Analyzer	HP 339A
Aircraft Receiver (optional)	Bendix CNS-2220
Photocopy of Data Sheet	Appendix A

Test Set Verification Required Equipment List
Table 4-1

Utilize Appendix A to record all of the data. The datasheet provides a location to input the data. Each space is identifiable by the test paragraph number and step number.

4.3.2 Initial Test Configuration

Set the Test Set switches to the following positions when indicated:

Switch Name	
Setting	
AC Input	120 VAC
AC Power	OFF
GS	OC
LOC	OC
$108.10 / 334.70-108.15 / 334.55$	$108.10 / 334.70$
DELETE 90, DELETE 150, 1020 LOC	Released
FUNCTION	VOR
VOR Bearing	0°
VAR	Off
108.00/108.05	108.00
1020 VAR	Released
MB Select	3000
TEST SET POWER	OFF
SIMULTANEOUS MB	OFF
ATTENUATOR	10 dB

Test Set Switch Configuration
Table 4-2

T-30D Test Set
Figure 4-1

4.4 Radio Frequency Measurements

1. Set the Test Set switches to the Initial Configuration IAW Table 4-2.
2. Connect the Universal Counter to the RF OUTPUT with the attenuator set at 10 dB . Hold the LOC 1020 closed while turning "ON" the Test set. This procedure removes all audio modulation.
3. Observe on the counter a measurement of $\underline{107.9973-108.1027 \mathrm{MHz} \text {. }}$
4. Toggle the $\mathbf{1 0 8 . 0 0 / 1 0 8 . 0 5}$ switch to $\mathbf{1 0 8 . 0 5}$.
5. Observe on the counter a measurement of $108.0473-108.0527 \mathrm{MHz}$.
6. Return the $\mathbf{1 0 8 . 0 0 / 1 0 8 . 0 5}$ switch to $\mathbf{1 0 8 . 0 0}$.
7. Set the FUNCTION switch to LOC.
8. Observe on the counter a measurement of $108.0973-108.1027 \mathrm{MHz}$.
9. Toggle the $\mathbf{1 0 8 . 1 0 / 1 0 8 . 1 5}$ switch to $\mathbf{1 0 8 . 1 5}$.
10. Observe on the counter a measurement of $\underline{108.1473-108.1527 \mathrm{MHz} \text {. }}$
11. Return the $\mathbf{1 0 8 . 1 0 / 1 0 8 . 1 5}$ switch to $\mathbf{1 0 8 . 1 0}$.
12. Set the FUNCTION switch to MB.

13. Set the FUNCTION switch to GS.
14. Observe on the counter a measurement of $\underline{334.6916-334.7084 \mathrm{MHz} \text {. }}$
15. Toggle the $108.10 / 334.70 \mathbf{- 1 0 8 . 1 5 / 3 3 4 . 5 5}$ switch to $108.15 / 334.55$.
16. Observe on the counter a measurement of $\underline{334.5416-334.5584 \mathrm{MHz} \text {. }}$
17. Toggle the 108.10/334.70 - 108.15/334.55 switch back to 108.10 - $\mathbf{3 3 4 . 7 0}$.
18. Set the FUNCTION switch to VOR and the VOR BEARING to $\mathbf{0}^{\circ}$.
19. Turn the Test Set "OFF".

4.5 RF Power Measurements

1. Set the Test Set switches to the Initial Configuration IAW Table 4-2.
2. Connect the Power Meter to the RF OUTPUT with the attenuator set at 10 dB . Hold the LOC 1020 Down while turning "ON" the Test set. This procedure removes all audio modulation.
3. Set the VOR bearing switch to DELETED VOR.
4. Observe on the Power Meter a measurement of $+7 / \pm 2 \mathrm{dBm}$.
5. Set the FUNCTION switch to MB.
6. Observe on the Power Meter a measurement of $+1 / \pm 2 \mathrm{dBm}$.
7. Set the FUNCTION switch to GS.
8. Observe on the Power Meter a measurement of $\pm 8 / \pm 2 \mathrm{dBm}$.
9. Set the FUNCTION switch to VOR and the bearing to $\mathbf{0}^{\circ}$.
10. Turn the Test Set "OFF".

4.6 Percentage Modulation Measurements

1. Set the Test Set switches to the Initial Configuration IAW Table 4-2.
2. Connect the Modulation Meter to the Test Set RF OUTPUT connector with the attenuator set to 10 dB .
3. Set the Modulation Meter Bandwidth to 15 KHz .
4. Turn the Test Set "ON".
5. Set the VOR switch to DELETE REF 0.
6. Observe a measurement on the Modulation Meter of $\underline{28 \%-32 \%}$.
7. Set the VOR switch to DELETE VAR 0.
8. Observe a measurement on the Modulation Meter of $\underline{28 \%-32 \%}$.
9. Set the VOR switch to DELETED VOR, hold down the 1020 ~ VOR switch, observe a measurement of $15 \%-25 \%$ on the Modulation Meter.
10. Set the FUNCTION switch to MB.
11. Set the Modulation Meter bandwidth to 120 KHz.
12. Observe a measurement of $\underline{91 \%-99 \%}$ on the Modulation Meter with MB switch set to $\mathbf{3 0 0 0}$.
13. Set the MB switch to $\mathbf{1 3 0 0}$ and observe a measurement of $\underline{91 \%-99 \%}$.
14. Set the MB switch to $\mathbf{4 0 0}$ and observe a measurement of $\underline{91 \%-99 \%}$.
15. Set the MB switch back to $\mathbf{3 0 0 0}$.
16. Set the FUNCTION switch to GS.
17. Hold the DELETE 90 ~ switch DOWN and turn the GS switch to each position (+2 thru -2) and record the measured results in the assigned locations in Column A of the Data Sheet.
18. Hold the DELETE 150 ~ switch $D O W N$ and turn the GS switch to each position (+2 thru -2) and record the measured results in the assigned locations in Column B of the Data Sheet.
19. Subtract the values entered in Column B from Column A and compare the results to the specification table in Appendix A.
20. Set the FUNCTION switch to LOC.
21. Hold the DELETE 90 ~ switch $D O W N$ and turn the LOC switch to each position (L2 thru R2) and record the measured results in the assigned locations in Column A of the Data Sheet.
22. Hold the DELETE 150 ~ switch DOWN and turn the LOC switch to each position (L2 thru R2) and record the measured results in the assigned locations in Column B of the Data Sheet.
23. Subtract the values entered in Column B from Column A and compare the results to the specification table in Appendix A.
24. Hold DOWN the DELETE 90 ~ and DELETE 150 ~ switches, energize the 1020 ~ LOC switch. Observe a measured value on the Modulation Meter of 15% and 25\%.
25. Remove the Modulation Meter and connect the Spectrum Analyzer to the RF OUTPUT connector.
26. Set the FUNCTION switch to ILS.
27. Hold Down the SIMULTANEOUS MB switch and observe signals at:

75 MHz
108.10 MHz
$\underline{334.70 \mathrm{MHz}}$
28. Set the FUNCTION switch to VOR. Set both GS and LOC controls to the OC position. Turn the Test Set "OFF".

4.7 Audio Frequency and Distortion Measurements

1. Set the Test Set switches to the Initial Configuration IAW Table 4-2.
2. Connect the Modulation Meter to the RF OUTPUT connector with the attenuator set to 10 dB .
3. Connect the Audio Output of the Modulation Meter to the Distortion Analyzer and a Frequency Counter.
4. Turn the Test set "ON".
5. Set the FUNCTION switch to MB and observe that the distortion at 3000 Hz is $\leq 10 \%$ and the frequency at $2940-3060 \mathrm{~Hz}$.
6. Set the MB switch to 1300 and observe that the distortion is $\leq 10 \%$ and the frequency at $1274-1326 \mathrm{~Hz}$.
7. Set the MB switch to 400 and observe the distortion is $\leq 10 \%$ and the frequency at $392-408 \mathrm{~Hz}$.
8. Set the FUNCTION switch to VOR and the MB switch to $\mathbf{3 0 0 0}$.
9. Set the VOR bearing to DELETED REF 0 and observed that the 30 Hz distortion is $\leq 5 \%$ and the frequency is between $\underline{29-31 \mathrm{~Hz}}$.
10. Set the VOR bearing switch to DELETED 30 Hz and observe that the 9960 Hz distortion is $\leq 5 \%$ and the frequency is between $9959-9961 \mathrm{~Hz}$.
11. Set the VOR bearing switch to DELETED VOR and hold Down the 1020 ~ VOR and observe that the 1020 distortion is $\leq 10 \%$ and the frequency is between $\underline{1000}$ -1040 Hz .
12. Set the FUNCTION switch to LOC.
13. Hold Down the DELETE 150 Hz and observe that the 90 Hz distortion is $\leq 5 \%$ and the frequency is between $89-91 \mathrm{~Hz}$.
14. Hold Down the DELETE 90 Hz and observe that the 150 Hz distortion is $\leq 5 \%$ and the frequency is between $149-151 \mathrm{~Hz}$.
15. Hold Down the DELETE 90 ~, DELETE 150 ~, and 1020 ~ LOC switch and observe the 1020 Hz distortion is $\leq 10 \%$ and the frequency is between 1000 1040 Hz .
16. Set the FUNCTION switch to GS.
17. Hold Down the DELETE 150 ~ switch and observe that the 90 Hz distortion is $\leq 5 \%$ and the frequency is between $89-91 \mathrm{~Hz}$.
18. Hold Down the DELETE 90 ~ switch and observe that the 150 Hz distortion is \leq 5% and the frequency is between $149-151 \mathrm{~Hz}$.
19. Set the FUNCTION switch to VOR, the bearing to $\mathbf{0}^{\circ}$, and turn the Test Set "OFF".

4.8 VOR Angle Verification

1. Set the Test Set switches to the Initial Configuration IAW Table 4-2.
2. Connect a Modulation Meter to the RF OUTPUT connector with the attenuator at 10 dB , on the Test Set.
3. Connect the Audio Output of the Modulation Meter to the ZIFOR test set.
4. Turn the Test Set "ON".
5. Observe the angle that is displayed on the ZIFOR and record the measurement on the Data Sheet under $\mathbf{0}$.
6. Repeat Step \#5 for the other 7 positions on the VOR switch and record the data in the assigned positions the Data Sheet.
7. Verify Compliance IAW the supplied formula.
8. Set the VOR switch to 0°.
9. Set the VAR switch UP.
10. Turn the VAR dial fully CCW.
11. Observe that the angle indicated is $\leq 170^{\circ}$.
12. Turn the VAR dial fully CW.
13. Observe that the angle indicated is $>190^{\circ}$.
14. Set the VAR switch Down.
15. Test Set Verification and Acceptance checks complete. Turn the Test Set "OFF" and ensure that all values are correctly entered on the Data Sheet.

SECTION C

ANNUAL CALIBRATION AND ALIGNMENT

4.9 General

These procedures will be performed on an annual basis. They will be performed on an opened box to allow access to test points and alignment controls to align the Test Set to manufacturer's specifications. If these adjustments fail to return the Test Set to the specified parameters, the unit may require repair and additional maintenance. By utilizing the following procedures and referring to the schematics (Chapter VI), a qualified technician should be able to troubleshoot the problem. Do not make adjustments for results that meet the specification.

WARNING
Any time you are working with exposed wiring, the potential for electrical shock increases. Ensure all standard electrical safety procedures are strictly enforced to prevent injury.

4.9.1 Test Equipment Required

The following support equipment (or their equivalent) is necessary to perform the Test Set Annual Calibration and Alignment of the T-30D Test Set.

NOMENCLATURE	
DESIGNATION	
Universal Counter	HP 5335A
RF Power Meter	HP 432A
Spectrum Analyzer	HP 8558B
Modulation Meter	Boonton Electronics 82AD
Digital Voltmeter	Fluke 8000A
Oscilloscope	Tektronix 2235
DC Power Supply	$0-12 \mathrm{~V}$ @ 1 amp
Autotransformer	$115 \mathrm{~V} / 230 \mathrm{~V}, 50-60 \mathrm{~Hz}, 10 \mathrm{~W} \mathrm{min}$.
Zifor: Radial Standard	Collins 478A-3
Distortion Analyzer	HP 339A
Aircraft Receiver (optional)	Bendix CNS-2220
Photocopy of Data Sheet	Appendix B

Test Set Annual Calibration Equipment List
Table 4-3

Utilize Appendix B to record all of the data. The datasheet provides a location to input the data. Each space is identifiable by the test paragraph number and step number.

4.9.2 Initial Test Configuration

Set the Test Set switches to the following positions when indicated:

Switch Name	
Setting	
AC Input	115 VAC
AC Power	OFF
GS	OC
LOC	OC
108.10/334.70 - 108.15/334.55	$108.10 / 334.7$
DELETE 90, DELETE 150, 1020 LOC	Released
FUNCTION	VOR
VOR Bearing	0°
VAR	Off
108.00/108.05	108.00
1020 VAR	Released
MB Select	3000
TEST SET POWER	OFF
SIMULTANEOUS MB	OFF
ATTENUATOR	10 dB

Test Set Switch Configuration
Table 4-4

T-30D Test Set
Figure 4-2

4.10 AC Power Tests

NOTE
Locations of adjustment points and test points can be located by utilizing the illustrations located in Chapter VI.

1. Set the Test Set switches to the Initial Configuration IAW Table 4-4.
2. Remove both fuses from the Fuse Cartridge on the front panel of the Test Set.
3. Set the AC Input drawer to 120 VAC (see Chapter 2, Paragraph 2.7.2).
4. Using the Power cable supplied with the Test Set, connect the Test Set to the AC Autotransformer at 120 VAC.
5. Turn the Test Set "ON".
6. Verify the AC voltage between E9 and E10 on the A2 PCB Assembly. Verify 16 30 VAC.
7. Verify the DC voltage between E7 and E1 on the A2 PCB Assembly. Verify 16 20 VDC.
8. Turn Power "OFF" to the Test Set. Set the AC Fuse Drawer to 220 VAC (see Chapter 2, Paragraph 2.8.1) and reapply power.
9. Verify the AC voltage between E9 and E10 on the A2 PCB Assembly. Verify 8 10 VAC.
10. Turn the Test Set "OFF", reset the fuse drawer to 120 VAC and reinsert the fuses.

4.11 Battery Charge

1. Set the Test Set switches to the Initial Configuration IAW Table 4-4. Ensure that the Test Set is properly configured for your line voltage (120/220).
2. Turn the Test Set AC power "ON".
3. Charge the battery for a minimum of 16 Hours.
4. Turn the Test Set Power "OFF".
5. Verify the battery voltage between $\mathbf{E 1}$ and $\mathbf{E 7}$ is $\underline{13 \mathrm{VDC} \pm 1 \mathrm{VDC}}$.
6. Disconnect the AC Power.

4.12 DC Voltage Alignment

1. Set the Test Set switches to the Initial Configuration IAW Table 4-4.
2. On the A1 PCB Board, verify $+5.0 \mathrm{VDC} \pm 0.2 \mathrm{VDC}$ between TP3 and TP4.
3. On the A1 PCB Board, verify $+10.0 \mathrm{VDC} \pm 0.2 \mathrm{VDC}$ between TP2 and TP4.
4. Adjust R55 on A1 RF/Digital Board, if necessary.

4.13 Radio Frequency and Power Tests

4.13.1 VOR and LOC

1. Set the Test Set switches to the Initial Configuration IAW Table 4-4.
2. Connect the Universal Counter to the RF OUTPUT with the attenuator set at 10dB. Hold the LOC 1020 closed while turning "ON" the Test set. This procedure removes all audio modulation.
3. Connect a DVM to A1 - C152 and Ground. Set the 108.00/108.05 Switch to 108.00.
4. Adjust AI - L17 for $3.0-8.0 \mathrm{VDC}$.
5. Verify a frequency of $107.9973-108.0027 \mathrm{MHz}$; adjust A1-C140, if necessary.
6. Set the $\mathbf{1 0 8 . 0 0 / 1 0 8 . 0 5}$ switch to $\mathbf{1 0 8 . 0 5}$. Verify frequency of $\underline{108.0473-108.0527}$ MHz.
7. Turn the FUNCTION switch to LOC. Set the 108.10/334.70-108.15/334.55 switch to $108.15 / 334.55$. Verify frequency of $108.1473-108.1527 \mathrm{MHz}$.
8. Set the $108.10 / 334.70$ - $108.15 / 334.55$ switch to $108.10 / 334.70$. Verify a frequency of $108.0973-108.1027 \mathrm{MHz}$.
4.13.2 MB
9. Turn the FUNCTION switch to MB.
10. Verify a frequency of $74.99625-75.00375 \mathrm{MHz}$; adjust A1-C165, if necessary.
4.13.3 GS
11. Turn the FUNCTION switch to GS.
12. Set the $108.10 / 334.70 \mathbf{- 1 0 8 . 1 5 / 3 3 4 . 5 5}$ switch to $\mathbf{1 0 8 . 1 0 / 3 3 4 . 7 0}$.
13. Connect a DVM between A1 - C109 and Ground.
14. Adjust A1 - L13 to read 3.0-7.0VDC.
15. Verify a frequency of $\underline{334.6916-334.7084 ~ M H z ; ~ a d j u s t ~ A 1 ~-~ C 140, ~ i f ~ n e c e s s a r y . ~}$
16. Set the 108.10/334.70 - 108.15/334.55 switch to 108.15/334.55.

17. Turn the Test Set "OFF" and return the Front Panel switches to the Initial Configuration IAW Table 4-2.

4.13.4 POWER

1. Connect the Power Meter to the RF OUTPUT with the attenuator set at 10 dB . Hold the LOC 1020 closed while turning "ON" the Test set. This procedure removes all audio modulation.
2. Verify $\pm 7 \pm 2 \mathrm{dBm}$ on the meter; adjust $\mathrm{A} 1-\mathrm{R} 181$, if necessary.
3. Set the FUNCTION switch to GS.
4. Verify $+1 \pm 2 \mathrm{dBm}$ on the meter; adjust A1-R139, if necessary.
5. Set the FUNCTION switch to MB.
6. Verify $+8 \pm 2 \mathrm{dBm}$ on the meter; adjust $\mathrm{A} 1-\mathrm{R} 60$, if necessary.

If an adjustment is made on any of the Power Tests, verify the Modulation and Distortion tests for each respective test (See Paragraph 4.14 and 4.15).

4.14 Percentage Modulation Tests

4.14.1 VOR

1. Set the Test Set switches to the Initial Configuration IAW Table 4-4.
2. Connect the Modulation Meter to the Test Set RF OUTPUT connector with the attenuator set to 10 dB .
3. Set the Modulation Meter Bandwidth to 15 KHz .
4. Turn the Test Set "ON".
5. Set the VOR switch to DELETED VAR 0.
6. Verify between 28\% - 32\% modulation on the meter; adjust A1 - R48, if necessary.
7. Set the VOR switch to DELETED REF 0.
8. Verify between $28 \%-32 \%$ modulation on the meter; adjust $\mathrm{A} 1-\mathrm{R} 16$, in necessary.
9. Set the VOR switch to DELETED VOR, while holding down the 1020 ~ VOR switch, verify between $15 \%-25 \%$ modulation.
4.14.2 MB
10. Set the Modulation Meter Bandwidth to 120 KHz .
11. Set the FUNCTION switch to MB and the MB switch to $\mathbf{3 0 0 0}$.
12. Verify between $\underline{91 \%-99 \%}$ modulation; adjust A1 - R50, if necessary.
13. Set the MB switch to 1300.
14. Verify between $\underline{91 \%-99 \%}$ modulation; adjust A1 - R50, if necessary.
15. Set the MB switch to $\mathbf{4 0 0}$.
16. Verify between $\underline{91 \%-99 \%}$ modulation; adjust A1 - R50, if necessary.
17. Set the MB switch back to $\mathbf{3 0 0 0}$.

4.14.3 GS

1. Set the Modulation Meter to 15 KHz .
2. Set the FUNCTION switch to GS.
3. Hold the DELETE 90 ~ Down, turn the GS switch to OC and verify between 39.8\% - 40.2\% modulation; adjust A1 - R137, if necessary.
4. Switch between the DELETE 90 ~ and the DELETE 150 ~ positions and adjust A1 - R32 so that the difference is within 0.4%. It may be necessary to readjust A1-R137 after making the adjustments.
5. Hold Down the DELETE $\mathbf{9 0}$ ~ and turn the $\mathbf{G S}$ switch from the $\boldsymbol{+ 2}$ to $\mathbf{- 2}$ positions. Record each measurement at each position in Column A of the Data Sheet.
6. Hold Down the DELETE 150 ~ and turn the GS switch from the +2 to -2 positions. Record each measurement at each position in Column B of the Data Sheet.
7. Subtract the measurements from Column B from Column A, record the result and ensure that it meets the specification. It may be necessary complete steps 3 and 4 again.

4.14.4 LOC

1. Set the FUNCTION switch to LOC.
2. Hold Down the DELETE 90 ~ switch, turn the LOC switch to OC and verify between $19.8 \%-20.2 \%$ modulation; adjust A1 - R182, if necessary.
3. Switch between the DELETE 90 ~ and the DELETE 150 ~ positions and adjust A1 - R41 so that the difference is within 0.4%. It may be necessary to readjust A1 - R182 after making the adjustments.
4. Hold DOWN both the DELETE 90 ~ and the DELETE 150 ~ switches, energize the LOC ~ 1020 switch and verify between $15 \%-25 \%$ modulation.
5. Release the switches.
6. Hold Down the DELETE 90 ~ and turn the LOC switch from the $\mathbf{L 2}$ to R2 positions. Record each measurement at each position in Column A of the Data Sheet.
7. Hold Down the DELETE 150 ~ and turn the LOC switch from the $\mathbf{L 2}$ to R2 positions. Record each measurement at each position in Column B of the Data Sheet.
8. Subtract the measurements from Column B from Column A, record the result and ensure that it meets the specification. It may be necessary complete steps 2 and 3 again.
9. Set the FUNCTION switch to VOR, return the GS and LOC switches to OC, and turn "OFF" the Test Set.

4.14.5 Simultaneous MB and ILS

1. Remove the Modulation Meter and connect the Spectrum Analyzer to the RF OUTPUT connector.
2. Set the FUNCTION switch to ILS.
3. Hold Down the SIMULTANEOUS MB switch and observe signals at:

75 MHz
108.10 MHz
334.70 MHz
4. Record compliance on the Data Sheet.

4.15 Audio Frequency and Distortion Verification

1. Set the Test Set switches to the Initial Configuration IAW Table 4-4.
2. Connect the Modulation Meter to the RF OUTPUT connector with the attenuator set to 10 dB .
3. Connect a Universal Counter to A1 - TP33 and verify a frequency between 982,942-983,138; adjust C4, if necessary.
4. Connect the Audio Output of the Modulation Meter to the Distortion Analyzer and a Frequency Counter.
5. Turn the Test set "ON".
6. Set the FUNCTION switch to MB and observe that the distortion at 3000 Hz is $\leq 10 \%$ and the frequency at $2940-3060 \mathrm{~Hz}$.
7. Set the MB switch to $\mathbf{1 3 0 0}$ and observe that the distortion is $\leq 10 \%$ and the frequency at $1274-1326 \mathrm{~Hz}$.
8. Set the MB switch to $\mathbf{4 0 0}$ and observe the distortion is $\leq 10 \%$ and the frequency at $392-408 \mathrm{~Hz}$.
9. Set the FUNCTION switch to VOR and the MB switch to $\mathbf{3 0 0 0}$.
10. Set the VOR bearing to DELETED REF 0 and observed that the 30 Hz distortion is $\leq 5 \%$ and the frequency is between $29-31 \mathrm{~Hz}$.
11. Set the VOR bearing switch to DELETED 30Hz and observe that the 9960 Hz distortion is $\leq 5 \%$ and the frequency is between $9959-9961 \mathrm{~Hz}$.
12. Set the VOR bearing switch to DELETED VOR and hold Down the $\mathbf{1 0 2 0}$ ~ VOR and observe that the 1020 distortion is $\mathbf{< 1 0 \%}$ and the frequency is between 1000 -1040 Hz .
13. Set the FUNCTION switch to LOC.
14. Hold Down the DELETE 150 Hz and observe that the 90 Hz distortion is $\leq 5 \%$ and the frequency is between $89-91 \mathrm{~Hz}$.
15. Hold Down the DELETE 90 Hz and observe that the 150 Hz distortion is $\leq 5 \%$ and the frequency is between $149-151 \mathrm{~Hz}$.
16. Hold Down the DELETE 90 ~, DELETE 150 ~, and 1020 ~ LOC switch and observe the 1020 Hz distortion is $\leq 10 \%$ and the frequency is between $1000-$ 1040 Hz .
17. Set the FUNCTION switch to GS.
18. Hold Down the DELETE 150 ~ switch and observe that the 90 Hz distortion is $\leq 5 \%$ and the frequency is between $89-91 \mathrm{~Hz}$.
19. Hold Down the DELETE $90 \sim$ switch and observe that the 150 Hz distortion is \leq 5% and the frequency is between $149-151 \mathrm{~Hz}$.
20. Set the FUNCTION switch to VOR, the bearing to $\mathbf{0}^{\circ}$, and turn the Test Set "OFF".

4.16 VOR Angle Verification

1. Set the Test Set switches to the Initial Configuration IAW Table 4-4.
2. Connect a Modulation Meter to the RF OUTPUT connector with the attenuator at 10 dB , on the Test Set.
3. Connect the Audio Output of the Modulation Meter to the ZIFOR test set.
4. Turn the Test Set "ON".
5. Observe the angle that is displayed on the ZIFOR and record the measurement on the Data Sheet under 270.
6. Repeat Step \#5 for the other 7 positions on the VOR switch and record the data in the assigned positions the Data Sheet.
7. Verify Compliance IAW the supplied formula.
8. Turn the Test Set "OFF".
9. Select the bearing whose error is closet to the mean error and select that bearing using the VOR switch.
10. Connect the Test Set to the VOR Receiver/Mockup and set Receiver Display for the selected heading in step 8.
11. Set the Test Set ATTENUATOR to 50 dB , turn "ON" the Test Set and the VOR Receiver.
12. Observe the bearing indicated on the VOR indicator and verify that it is $\pm 1^{\circ}$ of the selected bearing.
13. If necessary, adjust A2S1 until the indicator is within specification. Record the S1 switch positions on the Data Sheet.

A2 S1
Figure 4-3

SWITCH S1 SECTIONS	
Section	Degree Offset
1	0.18
2	0.35
3	0.70
4	1.41
5	2.81
6	5.62
7	11.25
8	22.50

Switch S1 Sections
Table 4-5
14. Set the VOR switch to $\mathbf{0}^{\circ}$.
15. Set the VAR switch to "ON".
16. Turn the VAR pot to fully CCW.
17. Observe the bearing indicated is $\leq 170^{\circ}$.
18. Turn the VAR pot fully CW.
19. Observe the bearing indicated is $>190^{\circ}$.
20. Turn the VAR switch "OFF".
21. Turn the Test Set "OFF".

CHAPTER V

SCHEMATICS

CHAPTER VI

ILLUSTRATED PARTS BREAKDOWN

T-30D Front Panel Assembly			89000058 (A3)			
Item No.	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
1		Cable Assy, RF/Dig CHASSIS TO F.P.	75010067			1
2		Cable Assy, RF/Dig To Panel Bd.	75010092			1
3	$\begin{aligned} & \hline \text { PFC2-832- } \\ & 94 \end{aligned}$	Fastener,Panel	56020001		PEM	8
4		PCB Ass'y,Panel Switch	80103001			1
5	$\begin{aligned} & \hline \text { MS35649- } \\ & 244 \\ & \hline \end{aligned}$	Nut, Hex, \#4	53010002			2
6	104480-8	Contacts,Recp	46053002		AMP	2
7	MS51957- 27	Screw, PH, 6-32 x 5/16 LG.	50110001			8
8	104257-1	Conn,Recp,Housing	46052005		AMP	1
9	103653-1	Conn,Recp, Housing	46052004		AMP	1
10		Nameplate, Generic, 115/230VAC $50-400 \mathrm{HZ}$	57030014			1
11	HTB-221SP	Fuseholder	48063002		BUSSMAN	2
12	0034.5037	Fuse, $250 \mathrm{MA} / 250 \mathrm{~V}$, SUPER TIME LAG	45100028	F1, F2	SCHURTER	2
12	0034.5004	Fuse, $125 \mathrm{MA} / 250 \mathrm{~V}$, SUPER TIME LAG	45100027	F3, F4	SCHURTER	ALT
13	AGC-5	Fuse, 5A, (250V)	45100002		SCHURTER	2
14	$4303.2014 .0$ 1	Fusedrawer	48035016		SCHURTER	1
15	288-09-ALC	Ferrule	31020035		PROMPTUS	4
16	$\begin{aligned} & 231-54 A L-8- \\ & 32-C \end{aligned}$	Handle	56025004		PROMPTUS	2
17	RB67-1-ML	Knob,Blk Line	57025020		ROGAN	3
18	$\begin{aligned} & \text { RB67-1- } \\ & \text { TSK-M } \end{aligned}$	Knob,Sktd, Clr	57025021		ROGAN	2
19	$\begin{aligned} & \text { MS91528- } \\ & \text { 1II1B } \\ & \hline \end{aligned}$	Knob	57025023		$\begin{aligned} & \hline \text { ELECT. } \\ & \text { HARD. } \\ & \hline \end{aligned}$	5
20	$\begin{aligned} & \text { 559-0101- } \\ & 007 \end{aligned}$	Light,LED,Red	45001002		DIALIGHT	1
21		Contacts,Pins	46053003	AMP	104505-5	2
22		Pot,10kohm	41700023	C'STAT	$\begin{aligned} & \text { RV6NAYSD10 } \\ & \text { 3A } \end{aligned}$	3
23		Res,Power,5W,6.0ohm	41400002	DALE	RH-5	2
24		Receptacle,AC	48035001	SCHURTER	$\begin{aligned} & \text { KD14.4101.15 } \\ & 1 \\ & \hline \end{aligned}$	1
25		Switch,Toggle,1P	46027516	C \& K	7105TCWZQE	1
26		Standoff, 5/16Hex 9/16Lg.	52400021	RAF	$\begin{aligned} & 2172-632-\mathrm{SS}- \\ & 20 \end{aligned}$	6
27		$\begin{aligned} & \text { Standoff, 5/16 Hex (M-F) 2- } \\ & \text { 3/8Lg. } \end{aligned}$	52700005	RAF	$\begin{aligned} & 4602-632-\text { SS- } \\ & 20 \end{aligned}$	2
28		Standoff,5/16Hex,2.562lg	52400022	AMATON	$\begin{aligned} & \hline \text { P941-M09- } \\ & \text { F09-832 } \end{aligned}$	2
29		Screw, PH, 8-32 x 3/4 Lg.	50110034		MS51957-47	2
30		$\begin{aligned} & \text { Standoff, } 5 / 16 \mathrm{Hex}(\mathrm{~F}) 2- \\ & \text { 1/4Lg. } \end{aligned}$	52400018	RAF	$\begin{aligned} & \text { 2197-832-SS- } \\ & 20 \end{aligned}$	4

T-30D Front Panel Assembly			89000058 (A3)			
Item No.	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
31		Switch,Toggle, 1P	46027523	7108TCWCQE	C \& K	5
32		Switch,Rot,BCD,12P	46020021	513385	GRAYHILL	7
33		Switch,Toggle,1P	46027522	7101TCWCQE	C \& K	3
34		Transformer	43000007	A41-25-16	SIGNAL	1
35		Battery Spacer, Nylon	31004015			1
36		BRACKET,BATTERY MTG BTM	62020033			1
37		Plate,Mtg.,Resistors	62070032			1
38		$\begin{aligned} & \text { Screw, FH, } 82 \text { degree (BLK), } \\ & 4-40 \times 3 / 8 \text { LG. } \end{aligned}$	50140005		MS51959-158	2
39		Lug, Ground, \#8	55010003	Keystone	7313	1
40		Panel,Front	61060028		61060068	1
41		Washer, Split-Lock, \#4	52020002		MS35338-135	1
42		Battery, 12V NICAD	48071001	EAC	240001-826	1
43		RF/DIG Chassis Assembly	88000022			1
44		Light, LED, Green	45001015	DIALIGHT	559-0201-007	2
45		Cover, Protective	31000021			1
46		Lug, Ground \#4	55010001	KEYSTONE	7311	1
47		Washer, Split-Lock, \#6	52020001		MS35338-136	2
48		Screw, PH, 8-32 x 3/8 LG.	50110013		MS51957-43	4
49		Washer, Split-Lock, \#8	52020003		MS35338-137	4
50		Washer, Flat Reduced O.D. \#6	52010008		NAS 620C-6L	6
51		Label, Safety Function	57031011	PANDUIT	PESC-H-EC	1
52		Adapter Rod, Transformer	62030008			1
53		Silkscreen, Front Panel	57005014			1
54		$\begin{aligned} & \text { Screw, FH, } 82 \text { degreee, } 8-32 \times \\ & \text { 3/8 LG. } \end{aligned}$	50140002		MS51959-43	6
55		Adhesive, Rubber and Gasket	31010002	3M	1300	AR
56		Programmed Memory (Sine)	$\begin{gathered} 48077002- \\ 01 \end{gathered}$			1
		IC Prom Eraseable	40200104			1
57		Programmed Memory	$\begin{gathered} 48077004- \\ 01 \end{gathered}$			1
		IC Prom Eraseable	40200104			1
58		Wiring Diagram, Front Panel	79000043			
59		Interconnect Diagram, Front Panel	89003058			
60		Composite Test Procedure	90006053			

T-30D Antenna /RF Output Cable			75010067 (W2)			
Item No.	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
1		CONNECTOR, TNC, BULKHEAD MOUNT	48040029	31-2318	AMP	1
2		CABLE, COAXIAL	71110006	$\begin{aligned} & 53284 \text { (RG- } \\ & 316 / \mathrm{U}) \end{aligned}$	OLYMPIC	AR
3		CONNECTOR, COAX, SMA	48040026	142-0321-001	$\begin{aligned} & \text { E.F. } \\ & \text { JOHNSON } \end{aligned}$	1
4		PRINTABLE HEATSHRINK, WHITE	73000018	$\begin{aligned} & \hline \text { TMS-SCE-3/16- } \\ & 2.0-9 \end{aligned}$	RAYCHEM	1

3

T-30D Digital Board to Panel Cable Assy.
 75010092 (W3)

Item No.	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
1		CONNECTOR, 37 PIN	$\mathbf{4 8 0 0 0 0 3 9}$	$747303-1$	AMP	1
2		HEADER, 40 PIN	$\mathbf{5 5 0 5 0 0 0 6}$	$3940-0000 T(S T$. RLF 3448-3940)	$3 M$	1
3		FLEX CABLE, 40 PIN	75000015	$3302-40$	$3 M$	AR
4		LABEL, LASER, RIBBON CABLE	$\mathbf{7 3 1 0 0 0 0 2}$	LJSL19-Y3-1	PANDUIT	1

T-30D Panel, PCB Assembly			80103002 (A2)			
$\begin{gathered} \text { Item } \\ \text { No. } \end{gathered}$	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
1	$\begin{aligned} & \hline \text { Panel PCB, } \\ & \text { Blank } \end{aligned}$	Panel PCB, Blank	80103002			1
2	I.C. OctoCoupler	I.C. Octo-Coupler	40200098	4N35	Motorola	1
3	I.C.-SM	I.C.-SM	40201099	LM311D	Motorola	1
4	I.C.-SM	I.C.-SM	40201020	CD4060BCM	Nat'I Semi.	1
5	I.C.-SM	I.C.-SM	40201015	CD4025BCM	Nat'I Semi.	1
6	Term. D-T	Term. D-T	55025002	\#160-2043-02-01	Cambion	20
7	Transistor	Transistor	40001012	VN10LM	Siliconix	1
8	Diode, Zener	Diode, Zener	40010006	1N961B	Motorola	1
9	Diode	Diode	40010012	1N4003		4
10	Diode, ZenerSM	Diode, Zener-SM	40010025	PMBZ5240B	Philips	2
11	Diode-SM	Diode-SM	40010014	MMBD914		45
12	$\begin{aligned} & \text { Cap, Chip, } \\ & \text { CC1206, X7R, } \\ & \text { 0.01uF } \end{aligned}$	Cap, Chip, CC1206, X7R, 0.01uF	42020001			3
13	$\begin{aligned} & \text { Cap, Chip, } \\ & \text { CC1206, NPO, } \\ & 0.22 \mathrm{uF} \end{aligned}$	Cap, Chip, CC1206, NPO, 0.22uF	42025044			2
14	$\begin{aligned} & \text { Cap, Chip, } \\ & \text { CC1206, X7R, } \\ & 0.1 \mathrm{uF} \\ & \hline \end{aligned}$	Cap, Chip, CC1206, X7R, 0.1uF	42020013			1
15	$\begin{aligned} & \text { Res, Chip, } \\ & \text { RC1206, } 5 \%, \\ & \text { 1M } \end{aligned}$	Res, Chip, RC1206, 5\%, 1M	41160049			1
16	Res, Chip, RC1206, MF, 1\%, 249K	Res, Chip, RC1206, MF, 1\%, 249K	41101423			1
17	$\begin{aligned} & \text { Res, Chip, } \\ & \text { RC1206, MF, } \\ & 1 \%, 5.62 \mathrm{~K} \\ & \hline \end{aligned}$	Res, Chip, RC1206, MF, 1\%, 5.62K	41101265			1
18	Res, Chip, RC1206, MF, 1\%, 499 OHM	Res, Chip, RC1206, MF, 1\%, 499 OHM	41101164			1
19	$\begin{aligned} & \text { Res, Chip, } \\ & \text { RC1206, MF, } \\ & 1 \%, 49.9 \mathrm{~K} \end{aligned}$	Res, Chip, RC1206, MF, 1\%, 49.9K	41101356			1
20	$\begin{aligned} & \text { Res, Chip, } \\ & \text { RC1206, MF, } \\ & 1 \%, 4.99 \mathrm{~K} \\ & \hline \end{aligned}$	Res, Chip, RC1206, MF, 1\%, 4.99K	41101260			3
21	Res, Chip, RC1206, MF, 1\%, 232K	Res, Chip, RC1206, MF, 1\%, 232K	41101420			2
22	Res, Chip, RC1206, 5\%, 100K	Res, Chip, RC1206, 5\%, 100K	41160025			1
23	Res, Chip, RC1206, 5\%, 68 OHM	Res, Chip, RC1206, 5\%, 68 OHM	41160016			1
24	Res, Chip, RC1206, 5\%, 10K	Res, Chip, RC1206, 5\%, 10K	41160015			13
25	Res, Chip, RC1206, 5\%, 1K	Res, Chip, RC1206, 5\%, 1K	41160003			12
26	Relay, 12V	Relay, 12V	46005002	NEC\#EE2-12	NEC	1

T-30D Panel, PCB Assembly			80103002 (A2) Continued			
$\begin{gathered} \hline \text { Item } \\ \text { No. } \\ \hline \end{gathered}$	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
27	R42	$\begin{aligned} & \text { Res, Carbon, RCR07G, 5\%, } \\ & 100 \text { OHM } \end{aligned}$	41140021			1
28						
29		Flex Cable, 40 Pin	75000015	3M\#3302	3M	AR
30	S1	Switch, 8 Pos	46024002	90HBW08P	Grayhill	1
31	R16	Res, Chip, RC1206, 5\%, 150 OHM	41160009			1
32		Conn., 37 Pin	48000039	DC37-SF-M-1	T \& B	1
33						
34	R19	$\begin{aligned} & \text { Res, Chp, RC1206, 5\%, } 680 \\ & \text { OHM } \end{aligned}$	41160027			1
35	J1	Header, 40 Pin	55050006	3M\#3940-0000T	3M	1
36	C8	Cap, Cerm, X7R, 1uF/50V	42000032	PAN. ECUS1H105KBB	Panasonic	1

T-30D

T-30D Panel, PCB Assembly			80105001 (A6)			
$\begin{gathered} \hline \text { Item } \\ \text { No. } \\ \hline \end{gathered}$	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
1		Drilling and Fabrication, RF Switcb PCB (Rev A)	80105002			1
2	J1	Connector, Bulkhead, Right Angle	48040047	142-0701-321	RAF	1
3		Contact Strip	55075002	97-110-01	Inst. Specialties	A/R
4	K1,K2	Relay	46002004	172D-12	Teledyne	2
5	Q5, Q6	Transistor	40001012	VN10LM	Siliconix	2
6	TP30, TP31	Terminal, Double Turret	55025002	160-2043-02-01	Cambion	2
7	R104,R109	Res., Chip, RC1206, 5\% 27ohm	41160012			2
8	$\begin{aligned} & \text { R102, R106, } \\ & \text { R107, R111 } \\ & \hline \end{aligned}$	Res., Chip, RC1206, 5\% 62ohm	41160063			4
9	$\begin{aligned} & \text { R103, R105, } \\ & \text { R108, R110 } \end{aligned}$	Res., Chip, RC1206, 5\% 180ohm	41160006			4

T-30D RF/Digital PCB Assembly			80106001 (A1)			
Item No.	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
1	A1	PCB Drilling and Fab.	80106002			1
2						
3	$\begin{aligned} & \text { U1,U4,U14(U1 } \\ & \text { 4 NOT } \\ & \text { INSTLLD) } \end{aligned}$	I.C.-SM	40201014	74HC573WM	Nat'I Semi.	3
4	$\begin{aligned} & \mathrm{U7}, \mathrm{U} 10-\mathrm{U} 13, \\ & \mathrm{U} 15, \mathrm{U} 16 \end{aligned}$	I.C.-SM	40201013	74HC574WM	Nat'I Semi.	7
5	U19, U24	I.C.-SM	40201019	74HC04D	Nat'I Semi.	2
6	U3	I.C.	40200027	80C31BH	Intel	1
7	U18 (NOT INSTALLED)	I.C.	40200106	DS75160A	Nat'I Semi.	1
8	$\begin{aligned} & \hline \text { U17 (NOT } \\ & \text { INSTALLED) } \\ & \hline \end{aligned}$	I.C.	40200107	DS75161A	Nat'I Semi.	1
9	L3	Inductor-SM, 0.27uH	43011028	300NS-R27M	Toko	1
10	U9	I.C.-SM (REF. ITEM 132 SUBSTITUTE)	40201105	AD7828BR	Analog Devices	1
11	U8, U39, U40	I.C.-SM (REF. ITEM 131 SUBSTITUTE)	40201106	$\begin{aligned} & \text { AD7225BR/AD72 } \\ & \text { 25KR } \end{aligned}$		3
12	U25-U30	I.C.-SM	40201002	74HC163D	Nat'I Semi.	6
13	U34	I.C.-SM	40201034	74HC02D	Nat'I Semi.	1
14	U31-U33	I.C.-SM	40201095	74HC283D	Nat'I Semi.	3
15	U77	I.C.-SM	40201012	ICL7660CSA	Maxim	,
16	U41, U43	I.C.-SM	40201051	LM358M	Motorola	2
17						
18	U36	I.C.-SM Programmable Logic Array	40201100	16V8Z-25JI	Lattice Semi.	1
19	U42, U76	I.C.-SM	40201080	74HC4053BCM	Nat'I Semi.	2
20	U6	I.C.-SM	40201018	74HC4514WM	Nat'I Semi.	1
21	U49	I.C.-SM	40201145	SA602AM	Philips	1
22	CR2	Diode, Zener, 6.2V	40010029	1N5234B	Motorola	1
23	U73	I.C., Power Amp.	48085001	MHW593	Motorola	1
24	U56, U68	I.C.-SM	40201001	ASK1KK81	Mini-Circuits	2
25	$\begin{aligned} & \mathrm{U} 57, \mathrm{U} 58, \mathrm{U} 60, \\ & \mathrm{U} 69, \mathrm{U} 70, \mathrm{U} 72 \end{aligned}$	I.C.-SM	40201075	$\begin{aligned} & \text { TLC271IP/TI106 } \\ & \text { B271C } \end{aligned}$	Texas Inst.	6
26	U59, U71	I.C.-SM	40201057	MB1502PF	Fujitsu	2
27	U54, U55, U66, U67	I.C.-SM	40201098	MAR-1SM	Mini-Circuits	4
28	P1	Connector, 37PIN	48000033	$\begin{aligned} & \text { FCC17-C37PC- } \\ & \text { 44B } \end{aligned}$	Amphenol	1
29	U44	Volt. Regulator	56060003	LM7805CTH	Motorola	1
30	U46	Volt. Regulator	56060005	LM2941CT	Nat'I Semi.	1
31	U74	Attenuator	44001007	M.C. TOAT-124	Mini-Circuits	1
32	U75	Attenuator	44001008	$\begin{aligned} & \text { M.C. TOAT- } \\ & 51020 \end{aligned}$	Mini-Circuits	1
33	CR13, CR17	Diode-SM	40010017	MMBV109L	Motorola	2
34	$\begin{aligned} & \text { CR14, CR15, } \\ & \text { CR18, CR19 } \end{aligned}$	Diode-SM	40010016	ZC2800	Zetex	4
35	CR1	Diode, Zener, 5.1V	40010030	1N5231B	Motorola	1
36	Y1	Crystal, 12MHz	40040016		Bomar	1

T-30D RF/Digital PCB Assembly			80106001 (A1)			
$\begin{gathered} \text { Item } \\ \text { No. } \end{gathered}$	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
37	Y2	Crystal, 3.93216 MHz	40040029		Bomar	1
38	Y3	Crystal, 75.000 MHz	40040017		Bomar	1
39	Y4	Crystal, 6.4 MHz	40040026		Bomar	1
40	U20, U21	I.C.-SM	40201087	MAR-3SM	Mini-Circuits	2
41	N/A	Washer, Nylon	52062002			8
42	Q1, Q3, Q15	Transistor-SM	40001013	NEO2133	NEC	3
43	Q7, Q9, Q11	Transistor-SM	40001011	MMBT2222A	Nat'I Semi.	3
44	$\begin{aligned} & \text { Q2, Q4, Q8, } \\ & \text { Q10, Q12 } \\ & \hline \end{aligned}$	Transistor-SM	40001014	MMBT2907A	Nat'I Semi.	5
45	L1	Coil, Formed, 8.5T, CCW, 3/16 I.D. 20AWG, 3/8 LG.	43025040			1
46	L5	Inductor-SM, 0.15 uH	43011025	300NS-R15M	Toko	1
47	C43	$\begin{aligned} & \text { Cap, Chip, NPO, CC1206, } \\ & \text { 10pF } \end{aligned}$	42025013			1
48	R150	Res, Chip, RC1206, MF, 34K	41101340			1
49	L17	Coil, Formed, 6.5T, CW, . 188 I.D. 24AWG	43025031			1
50	C81	Cap, Cerm, 100pF	42000031	CN15C-101J	C' Lab	1
51	L13	Coil, Formed, 2T, CCW, . 125 I.D. 24AWG	43025038			1
52	C1,C47,C76, C 99, C106, C134,C135,C1 43	Cap-SM, Elect, 10uF, 16V	42185030	ECE-V1CA100R	Panasonic	8
53	$\begin{aligned} & \text { C107, C145, } \\ & \text { C167 } \end{aligned}$	Cap-SM, Elect, 1uF, 50V	42185045	ECE-V1HA010R	Panasonic	3
54	$\begin{aligned} & \text { C10, C12, C13, } \\ & \text { C160, C161 } \end{aligned}$	Cap-SM, Elect, 22uF, 25V	42185036	ECE-V1EA220P	Panasonic	5
55	C140	Cap-SM, Trimmer, 2.8-12.5pF	42260013	24AA071	Mouser	1
56	C149	$\begin{aligned} & \text { Cap, Chip, X7R, CC1206, } \\ & 0.022 \mathrm{uF} \end{aligned}$	42020021			1
57	C14-20,C22- 29,C31- 42,C54,C74- 75,C79- 80,C100- 102,C114, C136-137, C147,C162, C169- C177,C180,C1 94	Cap,Chip,X7R,CC1206,0.01uF (C35,C38 \& 39 AREN'T INSTD.)	42020001			51
58	C30	$\begin{aligned} & \text { Cap, Chip, X7R, CC1206, } \\ & \text { 4700pF } \end{aligned}$	42020049			1
59	C115, C192	$\begin{aligned} & \text { Cap, Chip, X7R, CC1206, } \\ & \text { 0.1uF } \end{aligned}$	42020013			2
60	C193	```Cap, Chip, NPO, CC1206, 220pF```	42025029			1
61	C4	$\begin{aligned} & \text { Cap, Chip, NPO, CC1206, } \\ & \text { 68pF } \end{aligned}$	42025023			1
62	R47	Res, Chip, RC1206, 5\%, 20K	41160092			1
63	L4	Coil, Formed, 4.5T, CW, . 125 I.D. 24AWG	43025034			1
64	C85, C86	$\begin{aligned} & \text { Cap, Chip, NPO, CC1206, } \\ & \text { 4.7pF } \end{aligned}$	42025042			2
65	C2, C3, C5	$\begin{aligned} & \text { Cap, Chip, NPO, CC1206, } \\ & \text { 33pF } \end{aligned}$	42025019			3
66	$\begin{aligned} & \hline \mathrm{C} 46, \mathrm{C} 84, \mathrm{C} 119 \\ & - \\ & 120, \mathrm{C} 133, \mathrm{C} 14 \\ & 1-142 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cap, Chip, NPO, CC1206, } \\ & 47 \mathrm{pF} \end{aligned}$	42025021			7

T-30D RF/Digital PCB Assembly			80106001 (A1)			
$\begin{gathered} \hline \text { Item } \\ \text { No. } \\ \hline \end{gathered}$	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
67	$\begin{aligned} & \hline \mathrm{C} 64, \mathrm{C} 87, \mathrm{C} 105, \\ & \text { C121, } \\ & \text { C123,C125- } \\ & \text { 127,C139 } \end{aligned}$	Cap, Chip, NPO, CC1206, $100 \mathrm{pF}$	42025025			9
68	C6,C8,C11,C4 4,C48-49,C50, C56,C73,C77, C82-83,C88- 95,C98,C109- 113, C118,C122,C1 24,C128- 129,C132,C14 8,C150- 154,C163- 164,C168,C17 8-179,C190	Cap, Chip, NPO, CC1206, 1000pF	42025037			44
69	C72	Cap, Chip, CC1210, 1uF	42026001		Bourns	1
70	$\begin{aligned} & \text { R32, R41, R50, } \\ & \text { R55 } \end{aligned}$	Trimpot-SM, 1K	41050007	3314G-1-102E	Bourns	4
71	R181	Trimpot-SM, 100K	41050013	3314G-1-104E	Bourns	1
72	R16, R139	Trimpot-SM, 10K	41050010	3314G-1-103E	Bourns	2
73	R2, R49	Res, Chip, RC1206, MF, 4.99K	41101260			2
74	R1, R35, R36	Res, Chip, RC1206, MF, 10.0K	41101289			3
75	R54	Res, Chip, RC1206, MF, 21.5K	41101321			1
76	R56	Res, Chip, RC1206, MF, 2.49K	41101231			1
77	$\begin{aligned} & \text { R151, R153, } \\ & \text { R193, R194 } \end{aligned}$	Res, Chip, RC1206, MF, 6.34K	41101270			4
78	R18	$\begin{aligned} & \text { Res, Chip, RC1210, 5\% } 120 \\ & \text { OHM } \end{aligned}$	41165003			1
79	R61, R170	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } 150 \\ & \text { OHM } \end{aligned}$	41160009			2
80	R64	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } 330 \\ & \text { OHM } \end{aligned}$	41160023			1
81	$\begin{aligned} & \hline \text { R128, R149, } \\ & \text { R169 } \\ & \hline \end{aligned}$	Res, Chip, RC1206, 5\% 8.2K	41160087			3
82	C45, C53	$\begin{aligned} & \text { Cap, Chip, NPO, CC1206, } \\ & \text { 22pF } \end{aligned}$	42025017			2
83	Q13	Transistor	40001017	MMBT918L	Nat'I Semi.	1
84	R137, R182	Trimpot-SM, 50K	41050012	3314G-1-503E	Bourns	2
85	R160, R161	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } 47 \\ & \text { OHM } \end{aligned}$	41160062			2
86	$\begin{aligned} & \text { R58, R125, } \\ & \text { R166, R235 } \end{aligned}$	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } 0 \\ & \text { OHM } \end{aligned}$	41160145			4
87	R129	Res, Chip, RC1206, 5\% 120 OHM OHM	41160064			1
88	R59, R243	Res, Chip, RC1206, 5\% 27K	41160024			2
89	R146, R187	Res, Chip, RC1206, 5\% 470 OHM	41160021			2
90						
91	$\begin{aligned} & \hline \text { R116, R156, } \\ & \text { R28 } \end{aligned}$	Res, Chip, RC1206, 5\% 2.7K	41160004			3
92	R117, R135, R159, R175	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } 680 \\ & \text { OHM } \end{aligned}$	41160027			4
93	$\begin{aligned} & \text { R65, R120, } \\ & \text { R162 } \end{aligned}$	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } 240 \\ & \text { OHM } \end{aligned}$	41160045			3
94						
95		PCB Assembly, RF Switch	80105001			1

T-30D RF/Digital PCB Assembly			80106001 (A1)			
Item No.	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
96						
97	$\begin{aligned} & \hline \text { R143, R145, } \\ & \text { R185, R186 } \end{aligned}$	Res, Chip, RC1206, 5\% 470K	41160036			4
98	$\begin{aligned} & \hline \text { R44,R138,R17 } \\ & \text { 9,R190,R242 } \\ & \hline \end{aligned}$	Res, Chip, RC1206, 5\% 47K	41160031			5
99	$\begin{aligned} & \text { R127, R152, } \\ & \text { R168, R192 } \end{aligned}$	Res, Chip, RC1206, 5\% 3.3K	41160029			4
100						
101	R123, R164	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } \\ & 270 \text { OHM } \end{aligned}$	41160001			2
102	R119, R121	Res, Chip, RC1206, 5\% 33 OHM	41160007			2
103						
104	R130, R171	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } \\ & 220 \text { OHM } \end{aligned}$	41160020			2
105	$\begin{aligned} & \text { R122, R133, } \\ & \text { R174 } \end{aligned}$	Res, Chip, RC1206, 5\% 62 OHM	41160063			3
106	$\begin{aligned} & \text { R45, R163, } \\ & \text { R178.R239 } \end{aligned}$	$\begin{aligned} & \text { Res, Chip, RC1206, 5\% } \\ & 100 \text { OHM } \end{aligned}$	41160011			4
107	R4,R220, R221, R223- 224, R226-227, R230- 231,R244	Res, Chip, RC1206, 5\% 1K	41160003			10
108	R26	Res, Chip, RC1206, 5\% 10M OHM	41160033			1
109	$\begin{aligned} & \text { R147- } \\ & \text { 148,R180,R18 } \\ & 8-189 \end{aligned}$	Res, Chip, RC1206, 5\% 100K	41160025			5
110	R3,R5- 15,R27,R30- 31,R33- 34,R37- 40,R51,R115,R 118,R132,R14 0,R144,R154,R 157- 158,R172,R17 7,R191,R195,R 222,R225,R22 8,R233- 234,R238	Res, Chip, RC1206, 5\% 10K	41160015			40
111		Cover, RF Shielding	62040030			1
112	R43, R48	Trimpot, 20K	41050011	3314G-1-203E	Bourns	2
113		Screw, P.H. 4-40 X 5/16 LG	50110009			2
114		Washer, Flat, No. 4	52010002			2
115		Washer, Lock, No. 4	52020002			4
116		Nut, Plain, Hexagon, No. 4	53010001			4
117	$\begin{aligned} & \hline \text { TP1-TP23, } \\ & \text { TP32, TP33 } \\ & \hline \end{aligned}$	Terminal, Double Turret	55025002	160-2043-02-01	Cambion	25
118	XY1-XY4	Crystal Mount	55080002	470.025	Bivar	4
119		Shield, Isolation	31020074			1
120		Screw, P.H. 4-40 X 1/2 LG	50110002			2

T-30D RF/Digital PCB Assembly			80106001 (A1)			
Item No.	Ref. Designation	Nomenclature	Tel Designation	Vendor P/N	Resource	Qty
121	XU5, XU35	Socket, I.C., 28PIN	48064001	ICN-286-S5-T	Robinson Nugent	2
122	C165	Cap-SM, Trimmer, 3.5-20pF	42260015	24AA072	Mouser	1
123		Wire, Coaxial (RG-178B/U)	71110004	53265 or equiv.	Olympic	A/R
124						
125	R232	Res, Chip, RC1206, 5\% 1.6K	41160077			1
126	R241	Res, Chip, RC1206, 5\% 4.7K	41160013			1
127	R60	Trimpot, 5K	41050009	3314G-1-502E	Bourns	1
128	C7	Cap. Tant, 100uF/20V, 10\%	42470021	$\begin{aligned} & \text { 199D107X9020F } \\ & \text { E2 } \end{aligned}$	Sprague	1
129	N/A	Shield, Isolation	31020077			1
130	R245	Res, Chip, RC1206, 5\%, 39K	41160096			1
131	U8, U39, U40	I.C.-SM (REF. ITEM 11SUBSTITUTE)	40201091	MAX505AEWG/B EWG	Maxim	3
121	XU5, XU35	Socket, I.C., 28PIN	48064001	ICN-286-S5-T	Robinson Nugent	2
122	C165	Cap-SM, Trimmer, 3.5-20pF	42260015	24AA072	Mouser	1
123		Wire, Coaxial (RG-178B/U)	71110004	53265 or equiv.	Olympic	A/R
124						
125	R232	Res, Chip, RC1206, 5\% 1.6K	41160077			1
126	R241	Res, Chip, RC1206, 5\% 4.7K	41160013			1
127	R60	Trimpot, 5K	41050009	3314G-1-502E	Bourns	1
128	C7	Cap. Tant, 100uF/20V, 10\%	42470021	$\begin{aligned} & \text { 199D107X9020F } \\ & \text { E2 } \end{aligned}$	Sprague	1
129	N/A	Shield, Isolation	31020077			1
130	R245	Res, Chip, RC1206, 5\%, 39K	41160096			1
131	U8, U39, U40	I.C.-SM (REF. ITEM 11SUBSTITUTE)	40201091	MAX505AEWG/B EWG	Maxim	3
132	U9	I.C.-SM (REF. ITEM 10SUBSTITUTE)	40201092	MAX158AEWI	Maxim	1
133		Shield Cover	62040031			1
134	R240	$\begin{aligned} & \text { Res, Chip, RC1206, 5\%, } 560 \\ & \text { OHM } \end{aligned}$	41160017			1

APPENDIX A

DATA TEST SHEET

TEST DATA SHEET
 TEST SET VERIFICATION AND ACCEPTANCE CHECKS

Date of Test:
S/N:

4.4 - Radio Frequency Measurements

Step $\boldsymbol{\#}$	Description of Test	Specification	Actual Measurement	Pass/ Fail	Int.	
$\mathbf{3}$	108.00 MHz, VOR Frequency	$107.9973-108.1027 \mathrm{MHz}$				
$\mathbf{5}$	108.05 MHz, VOR Frequency	$108.0473-108.0527 \mathrm{MHz}$				
$\mathbf{8}$	108.10 MHz, LOC Frequency	$108.0973-108.1027 \mathrm{MHz}$				
$\mathbf{1 0}$	108.15 MHz, LOC Frequency	$108.473-108.1527 \mathrm{MHz}$				
$\mathbf{1 3}$	$\mathbf{7 5 ~ M H z}$, MB Frequency	$74.99625-75.00375 \mathrm{MHz}$				
$\mathbf{1 5}$	334.70 MHz , GS Frequency	$334.6916-334.7084 \mathrm{MHz}$				
$\mathbf{1 7}$	334.55 MHz, GS Frequency	$334.5416-334.5584 \mathrm{MHz}$				

4.5 - RF Power Measurements

Step $\#$	Description of Test	Specification	Actual Measurement	Pass/ Fail	Int.
$\mathbf{4}$	VOR Power	$+7 / \pm 2 \mathrm{dBm}$ Minimum			
$\mathbf{6}$	MB Power	$+8 / \pm 2 \mathrm{dBm}$ Minimum			
$\mathbf{8}$	GS Power	$+1 / \pm 2 \mathrm{dBm}$ Minimum			

4.6 - Percentage Modulation Measurements

Step $\#$	Description of Test	Specification	Actual Measurement	Pass/ Fail	Int.
$\mathbf{6}$	VOR Percentage of 30 Hz	$28 \%-32 \%$			
$\mathbf{8}$	VOR Percentage of 9960 Hz	$28 \%-32 \%$			
$\mathbf{9}$	VOR Percentage of 1020 Hz	$15 \%-25 \%$			
$\mathbf{1 2}$	MB Percentage at 3000 Hz	$91 \%-99 \%$			
$\mathbf{1 3}$	MB Percentage at 1300 Hz	$91 \%-99 \%$			
$\mathbf{1 4}$	MB Percentage at 400 Hz	$91 \%-99 \%$			

4.6 - Percentage Modulation Measurements (continued) Glideslope Percentage

Steps 16-19

GS SW.	Column \mathbf{A} Delete 90	Column \mathbf{B} Delete 150	Diff in \% $\mathbf{A}-\mathbf{B}$	Specification	Pass/ Fail	Int.
$\boldsymbol{+ 2}$				15.0% to 20.0%		
$\boldsymbol{+ 1}$				Not specified $(7 \%-11 \%)$		
OC				-1.0% to $+1.0 \%$		
$-\mathbf{1}$				Not Specified $(-7 \%$ to $-11 \%)$		
$\mathbf{- 2}$			-15.0% to -20.0%			

Localizer Percentage

Steps 20-23

LOC SW.	Column \mathbf{A} Delete 90	Column \mathbf{B} Delete 150	Diff in \% $\mathbf{A}-\mathbf{B}$	Specification	Pass/ Fail	Int.
L2				13.5% to 17.5%		
L1				Not specified $(6 \%-10 \%)$		
OC				$-1.0 \%-+1.0 \%$		
R1				Not Specified $(-6 \%$ to $-10 \%)$		
R2			-13.5% to -17.5%			

Step $\#$	Description of Test	Specification	Actual Measurement	Pass/ Fail	Int.	
$\mathbf{2 4}$	1020 Hz Modulation Percentage	$15 \%-25 \%$				

$\begin{gathered} \text { Step } \\ \# \end{gathered}$	Description of Test	Specification	Actual Measurement	$\begin{gathered} \hline \text { Pass/ } \\ \text { Fail } \end{gathered}$	Int.
27	Simultaneous MB Signals	Observe signals at 75 MHz			
		108.10 MHz			
		334.70 MHz			

4.7 - Audio Frequency and Distortion Measurements

Step \#	Description of Test	Specification		Actual Measurement	Pass/ Fail	Int.
		Distortion	Frequency			
5	MB Audio and Distortion 3000 Hz	< 10\%	$2940-3060$ Hz			
6	MB Audio and Distortion 1300 Hz	< 10\%	$1274-1326$ Hz			
7	MB Audio and Distortion 400 Hz	< 10\%	$392-408 \mathrm{~Hz}$			
9	VOR 30 Hz Distortion	< 5\%	$29-31 \mathrm{~Hz}$			
10	VOR 9960 Hz Distortion	< 5\%	$\begin{gathered} \hline 9959-9961 \\ \mathrm{~Hz} \end{gathered}$			
11	VOR 1020 Hz Distortion	< 10\%	$1000-1040$ Hz			
13	LOC 90 Hz Distortion	< 5\%	$89-91 \mathrm{~Hz}$			
14	LOC 150 Hz Distortion	< 5\%	$149-151 \mathrm{~Hz}$			
15	LOC 1020 Hz Distortion	< 10\%	$\begin{gathered} 1000-1040 \\ \mathrm{~Hz} \\ \hline \end{gathered}$			
17	GS 90 Hz Distortion	< 5\%	$89-91 \mathrm{~Hz}$			
18	GS 150 Hz Distortion	< 5\%	$149-151 \mathrm{~Hz}$			

4.8 - VOR Angle Verification

Steps 5-7

Switch Position	0	45	90	135	180	225	270	315
$\begin{aligned} & \text { ZIFOR } \\ & \text { Expected } \end{aligned}$	180	225	270	315	0	45	90	135
ACTUAL								
$\begin{gathered} \text { Difference } \\ <2^{\circ} \text { Pass/Fail } \end{gathered}$								

Step $\#$	Description of Test	Specification	Actual Measurement	Pass/ Fail	Int.
$\mathbf{1 1}$	0 Degree VOR Variable CCW Stop	$<170^{\circ}$			
$\mathbf{1 3}$	0 Degree VOR Variable CW Stop	$>190^{\circ}$			

Date \qquad Technician

APPENDIX B

DATA TEST SHEET

TEST DATA SHEET
 ANNUAL CALIBRATION AND ALIGNMENT

Date of Test:
S/N:

4.10 - AC Power Tests

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{6}$	AC Voltage, E9 \& E10	$+16-30$ VAC				
$\mathbf{7}$	AC Voltage, E7 \& E1	$+16-20$ VAC				
$\mathbf{9}$	AC Voltage, E9 \& E10	$+8-10$ VAC				

4.11 - Battery Charge

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{5}$	Battery Voltage, E1 \& E7	+13 VDC ± 1 V				

4.12 - DC Voltage Adjustment

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.	
$\mathbf{2}$	DC Voltage, TP3 \& TP4	+5 VDC ± 0.2 VDC					
$\mathbf{3}$	DC Voltage, TP2 \& TP4	+10VDC ± 0.2 VDC					

4.13.1 - VOR and LOC

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{4}$	L17 Voltage	$3.0-8.0 \mathrm{VDC}$				
$\mathbf{5}$	VOR, Frequency, 108.00	$107.9973-$				
108.0027 MHz						
$\mathbf{6}$	VOR, Frequency, 108.05	$108.473-$				
108.0527 MHz						

4.13.1 - VOR and LOC (Continued)

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int. $\mathbf{7}$ \quad LOC, Frequency, 108.15
$\mathbf{8}$	LOC, Frequency, 108.15	$108.1473-$				
108.1527 MHz						

4.13.2 - MB

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{2}$	MB, Frequency, 75 MHz	$74.99625-$ 75.00375 MHz				

4.13.3 - GS

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{4}$	L13 Voltage	$3.0-7.0 \mathrm{VDC}$				
$\mathbf{5}$	GS, Frequency, 334.70 MHz	$334.6916-$ 334.7084 MHz				
$\mathbf{7}$	GS, Frequency, 334.55 MHz	$334.5416-$ 334.5584 MHz				

4.13.4 - RF Power

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{2}$	VOR/LOC	$+7 / \pm 2 \mathrm{dBm}$				
$\mathbf{4}$	GS	$+1 / \pm 2 \mathrm{dBm}$				
$\mathbf{6}$	MB	$+8 / \pm 2 \mathrm{dBm}$				

4.14.1 - VOR Modulation Test

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{6}$	VOR, Deleted VAR	$28-32 \%$				
$\mathbf{8}$	VOR, Deleted Ref	$28-32 \%$				
$\mathbf{9}$	VOR, 1020 Deleted	$15-25 \%$				

4.14.2 - MB Modulation Test

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{3}$	$\mathrm{MB}, 3000 \mathrm{~Hz}$	$91-99 \%$				
$\mathbf{5}$	$\mathrm{MB}, 1300 \mathrm{~Hz}$	$91-99 \%$				
$\mathbf{7}$	$\mathrm{MB}, 400 \mathrm{~Hz}$	$91-99 \%$				

4.14.3 - GS Modulation Test

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{3}$	GS, Delete 90	$39.8-40.2 \%$				
$\mathbf{4}$	Delete 90/Delete 150, Difference	0.4%				

4.14.3 Step 5 \& 6 - GS Modulation INITIAL

$\begin{gathered} \text { GS } \\ \text { SW. } \end{gathered}$	$\begin{gathered} \text { Column } \\ \text { A } \\ \text { Delete } 90 \end{gathered}$	$\begin{gathered} \hline \text { Column } \\ \text { B } \\ \text { Delete } 150 \end{gathered}$	$\begin{gathered} \text { Diff in \% } \\ \text { A - B } \end{gathered}$	Specification	Pass/ Fail	Int.
+2				15.0 \% to 20.0 \%		
+1				Not specified (7\%-11\%)		
OC				-1.0\% to +1.0\%		
-1				Not Specified (-7\% to -11\%)		
-2				-15.0\% to -20.0\%		

4.14.3 Step 7 - GS Modulation FINAL (if necessary)

| GS
 SW. | Column
 A
 Delete 90 | Column
 B
 Delete 150 | Diff in \%
 A - B | Specification | Pass/ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fail | | | | | | Int.

4.14.4 - LOC Modulation

Step $\#$	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
$\mathbf{2}$	LOC, Delete 90	$19.8-20.2 \%$				
$\mathbf{3}$	Delete 90/Delete150, Difference	0.4%				
$\mathbf{4}$	LOC, Delete 1020	$15-25 \%$				

4.14.4 Step 6 \& 7 - LOC Modulation INITIAL

GS SW.	Column A Delete 90	Column B Delete 150	Diff in \% $\mathbf{A - B}$	Specification	Pass/ Fail	Int.
L2				13.5 to 17.5%		
L1				Not specified $(6 \%-10 \%)$		
OC			-1.0% to $+1.0 \%$			
R1				Not Specified $(-6 \%$ to $-10 \%)$		
R2			-13.5 to -17.5%			

4.14.4 Step 8 - LOC Modulation FINAL (if necessary)

$\begin{aligned} & \text { GS } \\ & \text { SW. } \end{aligned}$	$\begin{gathered} \text { Column } \\ \text { A } \\ \text { Delete } 90 \end{gathered}$	Column B Delete 150	Diff in \% A - B	Specification	Pass/ Fail	Int.
L2				13.5 to 17.5\%		
L1				Not specified (6\%-10\%)		
OC				-1.0\% to +1.0\%		
R1				Not Specified (-6\% to -10\%)		
R2				- 13.5 to -17.5\%		

4.14.5 - MB and ILS Simultaneous

4.15 - Audio Frequency and Distortion Verification

Step \#	Description of Test	Specification	Actual	Adjusted	Pass/ Fail	Int.
3	TP33	$\begin{gathered} \hline 982,942- \\ 938,138 \end{gathered}$				
6	MB, 3000 Hz Distortion	$\begin{aligned} & \text { Less than } 10 \% \\ & 2940-3060 \mathrm{~Hz} \end{aligned}$		N/A		
7	MB, 1300 Hz Distortion	$\begin{aligned} & \text { Less than } 10 \% \\ & 1274-1326 \mathrm{~Hz} \end{aligned}$		N/A		
8	MB, 400 Hz Distortion	Less than 10\% $392-408 \mathrm{~Hz}$		N/A		
10	VOR, 30 Hz Distortion	$\begin{gathered} \text { Less than } 5 \% \\ 29-31 \mathrm{~Hz} \end{gathered}$		N/A		
11	VOR, 9960 Hz Distortion	$\begin{gathered} \text { Less than } 5 \% \\ 9959-9961 \mathrm{~Hz} \end{gathered}$		N/A		
12	VOR, 1020 Hz Distortion	$\begin{aligned} & \text { Less than } 10 \% \\ & 1000-1040 \mathrm{~Hz} \end{aligned}$		N/A		
14	LOC, 90 Hz Distortion	$\begin{aligned} & \text { Less than } 5 \% \\ & 89-91 \mathrm{~Hz} \end{aligned}$		N/A		
15	LOC, 150 Hz Distortion	$\begin{aligned} & \text { Less than } 5 \% \\ & 149-151 \mathrm{~Hz} \end{aligned}$		N/A		
16	LOC, 1020 Hz Distortion	$\begin{aligned} & \text { Less than } 10 \% \\ & 1000-1040 \mathrm{~Hz} \end{aligned}$		N/A		
18	GS, 90 Hz Distortion	$\begin{gathered} \text { Less than } 5 \% \\ 89-91 \mathrm{~Hz} \end{gathered}$		N/A		
19	GS, 150 Hz Distortion	$\begin{aligned} & \text { Less than } 5 \% \\ & 149-151 \mathrm{~Hz} \end{aligned}$		N/A		

4.16 - VOR Angle Verification INITIAL

Switch Position	0	45	90	135	180	225	270	315
ZIFOR Expected	180	225	270	315	0	45	90	135
ACTUAL								
Difference Pass/Fail								

Compute the Maximum Peak to Peak error:

> MAX Error_
\qquad - MIN Error \qquad $=$

Tolerance \qquad $<2^{\circ}$

Compute the Mean Error:
$($ MAX Error___ + MIN Error___ $)(0.5)=$

SI Switch Positions	1	2	3	4	5	6	7	8

4.16 - VOR Angle Verification FINAL

Switch Position	0	45	90	135	180	225	270	315
ZIFOR Expected	180	225	270	315	0	45	90	135
ACTUAL								
Difference Pass/Fail								

Compute the Maximum Peak to Peak error:
MAX Error \qquad - MIN Error \qquad $=$

Tolerance \qquad $<2^{\circ}$

Compute the Mean Error:
(MAX Error \qquad + MIN Error \qquad) 0.5) $=$

Mean Error \qquad

SI Switch Positions	1	2	3	4	5	6	7	8

Step $\#$	Description of Test	Specification	Actual Measurement	Pass/ Fail	Int.
$\mathbf{1 1}$	0 Degree VOR Variable CCW Stop	$<170^{\circ}$			
13	0 Degree VOR Variable CW Stop	$>190^{\circ}$			

Date Test Completed \qquad 1 \qquad

Signature of Technician

[^0]: ${ }^{1}$ Tel Instruments Electronics Corporation reserves the right to change and modify specifications without notice.

[^1]: 2
 Further definitions may be found in the following reference books and documents: Helfrick, A.D. Principles of Avionics. Leesburg: Quality Books, 2000. RTCA/DO-181B. Minimum Operational Performance Standards for Air Traffic Control RADAR Beacon System/Mode Select (ATCRBS/Mode S) Airborne Equipment. Washington D.C.: 1999. United States. Federal Aviation Administration. Federal Register Fed 3, 1987 FAA rules Part 91.

[^2]: ${ }^{1}$ Tel-Instrument Electronics Corp. reserves the right to change and modify specifications and data without notice.

