AvionTEq

Tostwithtultrust

www.avioned.grifION 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual contains information on how to operate the Tel-Instrument T-36 and T-360 CAT III NAV/COMM test sets. The T-36 is a portable, battery/AC powered unit for use on the ramp or bench. The T-360 is identical to the T-36, except it is AC powered and is packaged for bench operation only.

All references to the T-36 in this manual will also apply to the T-360, except where specifically noted.
1.1.1 The T-36 is a precision simulator of VOR, ILS (LOC and GS), MB, and COMM ground stations. It is designed for either bench or ramp testing of avionics equipment. The T-36 is packaged in a MIL-T-28800 Style C case and is powered either by an internal NiCad battery pack or through an A / C line cord. A simple front panel change permits switching the input power from 115VAC to 220VAC. The T-360 is packaged in a MIL-T-2880, Style E or F case and is powered by 115 VAC to 220 VAC.
1.1.2 The VOR section permits radial bearing selection by a panel-mounted lever switch, in increments of 0.1 degree. An Ident Tone of 1020 Hz is also avialable with the VOR signal. VOR RF output levels may be varied with a calibrated output attenuator.
1.1.3 The LOC and GS sections use precision 90 and 150 Hz modulation generators to provide accurately mixed signals for "on-course" and specific "off-course" simulations. An Ident Tone of 1020 Hz is also available with the LOC signal. When the ILS operating mode is selected, both localizer and its paired glide-slope frequency are provided. All LOC and GS RF output levels may be varied with a calibrated output attenuator.
1.1.4 The MB section generates a 75 MHz signal which is tone modulated with 400,1300 , or 3000 Hz . A momentary switch provides simultaneous marker signals during LOC, GS, or ILS testing modes. MB RF output levels may be varied with a calibrated output attenuator
1.1.5 COMM frequencies from 118.000 to 151.975 MHz , in 25 KHz steps, are developed by an RF generator. Individual frequencies may be selected by panel-mounted lever switches. A 1020 Hz testing tone is provided as well as an optional external variable tone input. COMM RF output levels may be varied with a calibrated output attenuator.
1.1.6 In all modes of operation, the RF generator is crystal-controlled and phase locked in 25 KHz steps. In addition, GS and LOC variable frequency controls provide a full range of 90 and 150 Hz combinations.

1.2 SPECIIFICA TIONS

1.2.1 Signal Generator

Signal Types and Frequencies
Marker Beacon
75 MHz
VOR
108.000 to 117.950 MHz
LocalizerGlide Slope(paired with Localizer channels)329.150 to 335.000 MHz
ILS (consists of Localizer, paired Glide Slope, and Marker Beacon)
Communications 118.000 to 151.950 MHz
Output Level $-10 /-130 \mathrm{dBm}$ (Bench), $+15 /-105 \mathrm{dBm}$ (Ramp) in one dB steps
1.2.2 VOR
Bearing/Accuracy $0-359.9+/-0.3$ degrees
0.1 degree
Ident Tone 1020 Hz (switch selectable)
Depth of Modulation $30 \mathrm{~Hz}: 29-31 \%, 9960 \mathrm{~Hz}: 29-31 \%$, 1020 Hz : $9-11 \%$; all $\pm 1 \%$
1.2.3 Localizer DDM's (Left and Right)
$0.000,0.093,0.155,0.200,1.000$, plus continuously variable and 90 or 150 Hz delete
DDM Accuracy ± 0.01
Depth of Modulation $20 \%+/-1 \%$ for each tone at 0.000 DDM
Ident Tone 1020 Hz (switch selectable)
1.2.4 Glide Slope DDMs (Up and Down)$0.000,0.910,0.175,0.400,1.000$, plus continuously variable and 90 or150 Hz delete
DDM Accuracy $+/-0.01$
Depth of Modulation $40 \%+/-1 \%$ for each tone at 0.000 ddM
1.2.5 Marker Beacon
Tone $400,1300,3000 \mathrm{~Hz}$ (switch selectable)
Depth of Modulation
$95 \%+/-3 \%$
Simultaneous MBavialable on ILS, LOC, and GS Modes
1.2.6 COMM Receiver Test
Modulation 1020 Hz (0 to 95\%)
1.2.7 COMM Transmitter Measurements

Frequency Range
ID Tone (Internal)
ID. Tone (External)
Depth of Modulation
Power Measurement
Modulation Measurement
Frequency Error Measurement
Frequency Error Accuracy
1.2.8 Physical Characteristics

Case T-36
T-360
Size T-36
T-360
Weight T-36
T-360
Power T-36

T-360
Temperature
118.000 to 151.975 MHz

1020 Hz (switch selectable)
Front Panel (BNC connector)
0-95\%
1 Watt to 25 Watts $+/-10 \%$
$0-100+/-5 \%$
$+/-8 \mathrm{KHz}$ from selected frequency
$+/-500 \mathrm{~Hz}$

MIL-T-28800 Style C
MIL-T-28800 Style E or F
$20.5 \times 9 \times 7$ inches
7 high $\times 16.5 \times 15$ wide (Style E)
25 pounds
20 pounds
NiCad batteries (built in charger) and $115 / 230 \mathrm{VAC} 50-400 \mathrm{~Hz}$
$115 / 230$ VAC $50-400 \mathrm{~Hz}$
-51 to +71 C storage
-30 to +55 C operating

1.3 ICAO ANNEX 10 REQUIREMENTS

Tabulated below are the specifications associated with the VOR generation and the relevant ICAO Annex 10 requirements.

1.3.1 VOR

| | ANNEX 10 | T-36/T-360 |
| :--- | :--- | :--- | :--- |
| Accuracy of RF carrier frequency | 0.002% | 0.001% |
| Bearing Accuracy | 2 degrees | 1 degree |
| Depth of modulation due to
 9960 Hz sub carrier | $28 \%-32 \%$ | $29 \%-31 \%$ |

Modulation index of

Accuracy of 30 Hz modulation frequency	1%	0.01%

Accuracy of 9960 mid frequency $\quad 1 \% \quad 0.05 \%$
Amplitude modulation of 5\% 0.5%
9960 Hz suḅcarrier

Depth of modulation of ident tone	$10 \%-20 \%$	$9 \%-11 \%$
Accuracy of ident frequency	50 Hz	5 Hz
Depth of modulation of 30 Hz modulation	$28 \%-32 \%$	$29 \%-31 \%$

1.3.2 Communications

	ANNEX 10	T-36/T-360
Frequency accuracy	0.002%	0.001%
Maximum modulation	greater than 85%	greater than 95%
Channel separation	25 KHz	25 KHz
Frequency Range	$118 \mathrm{MHz}-136.975 \mathrm{MHz}$	$118 \mathrm{MHz-151.975MHz}$
Accuracy of RF carrier frequency	0.005%	0.001%

1.3.3 Localizer and Glide Slope
ANNEX 10 T-36/T-360
90 Hz and 150 Hz 1.0\% 0.1%
Total harmonic distortion 10% 2%
of 90 Hz tone
Second harmonic 5\% 2%
distortion of 90 Hz tone
Total harmonic distortion 10% 2%
of 150 Hz toneAmplitude modulated noise$0.5 \%$$0.1 \%$
Phase angle between the 9010 degrees1 degree
and 150 Hz sine functionsrelative to the common 30Hz "sub harmonic"
Accuracy of RF carrier 0.005\% 0.001\% frequency
Depth of modulation of each tone at 0 DDM 18.0\%-22.0\% 19.0\%-21.0\%
1.3.4 Marker Beacon

| | ANNEX 10 | T-36/T-360 |
| :--- | :--- | :--- | :--- |
| Accuracy of RF Carrier
 frequency | 0.005% | 0.001% |
| Accuracy of modulation
 frequency | 2.5% | 0.5% |
| Total harmonic distortion
 of modulation | 15% | 10% |
| Depth of modulation | $95 \%+/-4 \%$ | $95 \%+/-4 \%$ |

1.4 FRONT PANEL CONTROLS

All operating controls, test jacks, and connectors for the T-36 are located on the front paneI. AC input and AC fuse located on rear panel of T-360. Table 1-3 describes the function of each of these parts. Figures $1-1$ \& 1-2 illustrate location of the controls.

TABLE 1-3. FRONT PANEL CONTROL FUNCTIONS

Panel

Designation Ref Function

AC INPUT $\quad 1 \quad$ AC input power receptacle connects unit to power connector source via power cable supplied

AC power fuse connector. Can be configured for 115 VAC or 220 VAC power input

1A 32V Fuse 3
2A SB Fuse
4
T-36
AC Power Switch 5
T-36
AC Lamp
6
T-36
DC Power Switch 7
T-36
Power Switch 7
T-360

DC power fuse
Battery charging fuse. In circuit when charging battery

AC power for battery charging and operation from AC

AC on indicator, battery charging

Operates T-36. Battery operation has fifteen minute automatic shut off

Operates T-360

DC Lamp 8 T-36

Power On Lamp
8 T-360

PWR MOD FREQ 9
Switch

SIG/RCV/XMTR Switch

Power on indicator

Power on indicator

NOTE
When DC Switch (7) is pushed down (momentary position) DC power is shut off

Selects type of information displayed on Meter (10):
Transmitter Power
Transmitter Frequency Error
Transmitter Modulation Percentage
Three-function Meter:
Power Range WATTS 0-25
Frequency Error $\Delta \mathrm{F}-8 \mathrm{KHz}+8 \mathrm{KHz}$
Modulation Percent 0-100\%

NOTE

For operation, Function Switch (20) must be in COMM position

11 The T-36/T-360 three position function switch is used to set the operating characteristics of the test set for receiver, transmitter or transceiver testing. The switch positions are described below.

XMTR TEST - T-36/T-360 test set is in the transmitter parameter measurement mode. The input from the unit under test is terminated in a 25 watt dummy load and the transmitter modulation percentage, frequency error, and power may be measured. This switch position should be used when testing a communications transmitter or the transmit functions of a transceiver. A high-power dummy load is always presented to the transmitter under test so that no RF output is produced from the test set that may cause interference.

RCV/XMT - This switch position allows the T-36/T-360 test set to switch from SIG GEN to XMTR TEST under control of the microphone push to talk switch. This allows the T-36/T360 test set to simulate a communications transceiver which allows squelch and voice clarity tests to be performed.

SIG GEN - This switch position allows the T-36/T-360 test set to transmit the generated desired NAV/COMM frequencies. TNC ANT Jack (30) and BNC UUT Jack (31) are used to output the generated RF signals.

All switch positions have an automatic XMTR TEST sensor. If more than 0.1 watts are fed to the UUT connector on the front panel, the T-36/T-360 automatically switches to the XMTR TEST function. This prevents the UUT transmitter power from being dissipated in the signal generator section of the test set and presents a high-power dummy load to prevent damage to the transmitter under test. Therefore, transmitter parameter measurements may be made from any switch position by simply applying a transmitter with more than 0.1 watts output power.

The high power output jack on the front panel provides both a higher communications channel power output and an increased receiver sensitivity so that the high power output can be used to simulate a communications transceiver for antenna to antenna testing.

CAUTION

This connector is not protected against reverse power. Therefore, never connect a transmitter or transceiver to the high-power output jack.

MIKE Jack
12

PHONES Jack 13
VOLUME Control

GS Switch

LOC Switch • 17

Microphone jack for testing COMM function.
Headset jack for testing COMM functions
On-Off volume control for internal speaker or headset.
Internal speaker
Outer Ring Step Switch - controls Glide Slope DDM. Four Up and four DOWN DDM positions are provided. When switch is at 90 Hz , only the 90 Hz modulation is present $(150 \mathrm{~Hz}$ deleted). When the switch is at 150 Hz , only the 150 HZ modulation is present (90 Hz deleted).

Center Potentiometer - when the step switch is at VAR, the DDM may be continuously varied from 90 Hz only to 150 Hz only by turning this control.

Outer Ring Step Switch - controls Localizer DDM. Four LEFT and four RIGHT positions are provided. When the switch is at 150 Hz , only the 150 Hz modulation is present $(90 \mathrm{~Hz}$ deleted). When the switch is at 90 Hz , only the 90 Hz modulation is present (150 Hz deleted).

FREQUENCY . 18
Selector

Center Potentiometer - when the step switch is at VAR, the DDM may be continuously varied from 90 Hz only to 150 Hz only by turning this control.

Operating frequency selector controls individual operating frequency in the mode selected by the master function switch (20). 75 MHz selection is only avialable for the MB RF frequency. For GS and ILS operations, only the localizer frequency must be selected. (The paired glide slope frequency is automatically provided).

GLIDE SLOPE FREQUENCY - LOC FREQUENCY

INVALID Lamp 19 Lights when a frequency out of the function switch band has been selected.

NOTE

When INVALID lamp is lighted, the selected frequency is present on the output. This does not include the MB selection.

FUNCTION 20
Switch
Master Function Switch - select operating mode of test set LOC, GS, ILS, VOR, MB, or COMM.

LOC: Generates discrete localizer frequency from 108.1 to 111.9 MHz as selected FREQUENCYControl (18).

GS: Generates discrete glide slope frequency from 329.15 to 335.0 MHz when paired localizer frequency is selected by FREOUENCY Control (18). Marker Beacon may also be added.

ILS: Generates paired localizer and glide slope frequencies when the localizer frequency is selected by the FREQUENCY Control (18). Marker Beacon may be added to GS and LOC signals by pressing MB switch (34).

VOR: Generates VOR radial from 108.00 MHz to 117.95 MHz with a bearing from 0 to 359.9 degrees as selected by the BEARING Control (21).

MB: Generates a 75 MHz marker signal modulated at 400 , 1300 , or 3000 Hz as selected by MB tone control (33).

COMM: Generates COMM signals from 118.0 MHz to 151.975 MHz as selected by the FREQUENCY control (18).

BEARING
 21

Selector
INVALID Lamp 22
TO/FROM Switch 23
dB Switch 24

ATTENUATOR 25
Switch
Lamp 26
Lamp 27
ATTENUATOR 28

DELETE 30/9960 29
Switch
ANT Jack 30
UUT Jack 31

ANT/UUT Switch
32
MB Control
33

VOR bearing selector. Permits selection of individual VOR radial, from 1 to 359.9 degrees.

Lights when a VOR radial other than $0^{\circ}-359.9^{\circ}$ is selected.
Changes VOR bearing by 180°.
Provides 0 or -10 dB attenuation of RF output. Illuminates corresponding LED at decade attenuator control (25).

Decade attenuator - controls RF output in 10 dB increments from 0 to -110 dB .

LED lights when dB switch is at 0 dB position.
LED lights when dB switch is a -10 dB position.
Unit attenuator - controls RF output in 1 dB increments from 0 to -10 dB .

Permits either 30 Hz or 9960 Hz tone signal to be deleted in VOR RF output.

TNC antenna connector for telescoping rod antenna
BNC connector for direct coupling to UUT.

CAUTION

If the 25W MAX power is exceeded when testing COMM equipment, a warning tone will be heard from the front-panel speaker.

ANT or UUT selector switch.
400,1300 , or 3000 - provides 75 MHz marker beacon tones simulating inner, middle, and outer marker tones when master function switch (20) is set at MB.

Fig. 1-1

