Signal Sources IFR 3410 Series Digital RF Signal Generators An agile signal generator that combines wide frequency cover and high performance vector modulation in a small package, making it ideal for testing wireless communication systems and components Wide frequency coverage 250 kHz to 2 GHz (3412) 250 kHz to 3 GHz (3413) 250 kHz to 4 GHz (3414) 250 kHz to 6 GHz (3416) - Fast RF frequency and level settling for high speed testing - High performance vector modulation for improved component test - Optional dual channel arbitrary waveform generator (ARB) - Low adjacent channel power for receiver selectivity and amplifier linearity testing - Fast GPIB response to maximize ATE system performance - **IQCreator** ® RF waveform creation software - Wide bandwidth FM and AM modulation capability - Optional Differential I/Q outputs for simplified component test interfacing - Optional high speed pulse modulation capability - Compact and lightweight package - Simple to use touch panel interface - RF optimization modes Auto, Low Noise, Low ACP and Higher Power The IFR 3410 series are portable, lightweight signal generators covering a wide range of carrier frequencies to 6 GHz. High quality analog and vector modulation capabilities make these signal generators ideal for research, development and manufacturing applications. Careful attention to the design of the modulators and the RF system ensures that these signal generators exhibit low levels of adjacent channel power, making them suitable for the most demanding amplifier linearity and receiver selectivity measurements. The use of Aeroflex fractional N synthesis techniques, combined with fast level control and an electronic attenuator, ensures the 3410 series signal generators are both frequency and level agile for high speed ATE testing. ## Operation A flexible but intuitive user interface based on a touch panel display system ensures that the signal generator meets the needs of unskilled as well as skilled operators. The instrument can be configured to the required mode of operation very simply, with numerical data being entered by the keyboard or via a rotary control. The display shows the primary parameters in a clear and unambiguous format, minimizing the risk of operator error. ## **RF Output** The 3410 series signal generators provide peak output power of up to +16 dBm. With a level resolution of 0.01 dB, repeatable and accurate testing of wireless components can be performed. The electronic attenuator is ideal for high volume applications where attenuator life is critical. A user defined RF level limit can be entered to ensure that the signal generator cannot provide damaging signal levels when testing less robust components. Careful attention to the level control system guarantees that positive level transients cannot be generated. The fast responding electronic reverse power protection system helps ensure long life and high reliability when testing high power systems. ## **Spectral Purity** Receiver measurements require good spectral purity from a signal generator. The 3410 series has excellent performance with typically 1.5 Hz residual FM at 1 GHz and a floor noise of typically better than -148 dBc / Hz. #### Frequency and Level Setting Times Fast frequency and RF level setting times are key parameters in achieving minimum test execution times and therefore maximum throughput, in production environments. The 3410 series with typical frequency setting times of 2 ms and level setting times of 2.5 ms provide outstanding performance. In addition to comprehensive sweep functions for carrier frequency, RF level and modulation oscillator 3410 series provides an extremely fast optional sweep mode for frequency and level settings through the use of user stored lists. Option 010, List Mode has a setting time of less than 500 μ s and is ideal for frequency hopping and semi-conductor production applications. #### Modulation Comprehensive modulation facilities are provided for supporting the testing of analog or digital RF systems. A single key press turns the modulation on and off, providing a fast method for signal to noise checking. | | Int Am1 | Int (AM1 + AM2) | Ext AM1 | Int FM1 | Int (FM1 + FM2) | Ext FM1 | Int PM1 | Int (PM1 + PM2) | Ext PM1 | Internal IQ | External IQ | Pulse | Burst | |-----------------|----------|-----------------|---------|----------|-----------------|---------|----------|-----------------|---------|-------------|-------------|----------|----------| | Int AM1 | | | | ✓ | √ | ✓ | ✓ | ✓ | ✓ | | | ✓ | | | Int (AM1 + AM2) | | | | ✓ | | ✓ | ✓ | | ✓ | | | √ | | | Ext AM1 | | | | √ | √ | ✓ | ✓ | ✓ | ✓ | | | ✓ | | | Int FM1 | ✓ | ✓ | ✓ | | | | | | | | | √ | | | Int (FM1 + FM2) | √ | | ✓ | | | | | | | | | √ | | | Ext FM1 | √ | ✓ | ✓ | | | | | | | | | √ | | | Int PM1 | √ | ✓ | ✓ | | | | | | | | | √ | | | Int (PM1 + PM2) | √ | | ✓ | | | | | | | | | √ | | | Ext PM1 | √ | ✓ | ✓ | | | | | | | | | √ | | | Internal IQ | | | | | | | | | | | | √ | √ | | External IQ | | | | | | | | | | | | ✓ | √ | | Pulse | √ | ✓ | ✓ | ✓ | ✓ | ✓ | √ | ✓ | ✓ | √ | √ | | | | Burst | | | | | | | | | | ✓ | ✓ | | | Modulation Modes ## Vector Modulation The built-in IQ modulator provides state-of-the-art vector modulated signals with excellent level linearity, low vector error and low noise. With a typical vector bandwidth up to 55 MHz, the modulator is able to support wideband as well as narrow-band wireless standards. Internal calibration systems ensure the modulator performance can be quickly optimized to reduce vector errors and ensure low carrier leak at all operating frequencies. The linearity of the modulator and the RF output system is reflected in the excellent adjacent channel power when generating multi-carrier non-constant envelope signals such as cellular CDMA and TETRA. Typical 3GPP 2 carrier test model 1 (64 channels) ## **Analog Modulation** With typical AM bandwidth to 30 MHz and typical FM bandwidth to 20 MHz, the 3410 series signal generators are ideal tools for testing broadcast systems. The wide bandwidths allow video signals to modulate the carrier with minimal distortion. The wideband FM facilities allow the generation of fast-swept signals, while the use of a patented DC FM system ensures that carrier frequency errors when the FM is DC coupled are minimal. The specifications for AM are maintained to high carrier frequencies to support the use in modern EMC testing applications. The signal generator maintains excellent phase noise performance even when generating wideband modulated signals. ## **Modulation Oscillator** An internal modulation oscillator is provided which can be used to generate two tones in the frequency range 0.1 Hz to 50 kHz (16 MHz with Option 005 ARB Waveform Generator). In addition to sine waves, the modulation oscillator can provide square waves, triangular and sawtooth waveforms for narrow band sweeping. #### **Digital Modulation** The user has a choice of either a Dual Arbitrary Waveform Generator or a Real Time Baseband Generator for producing digitally modulated output signals. ## **Dual Arbitrary Waveform Generator** Fitted internally, the optional Dual Channel Arbitrary Waveform Generator allows the user to select from a library of pre-stored IQ modulator drive waveforms to provide accurately modulated carriers simulating the characteristics of digitally modulated communication systems. Burst modulation and alternate level rf attenuation facilities are provided for TDMA signal simulation. Marker output signals can be placed within the waveform to simplify triggering and synchronization with external test equipment. Using a patented technique, the dual channel ARB is able to take waveform files typically four times oversampled and run them through a real time interpolation system to raise the sampling rate of the file. This ensures the generation of low adjacent channel power and low spectral noise density. The dual channel ARB is suited for the generation of both narrow band and wideband signals, including WCDMA signals, without the use of switched reconstruction filters. Combining a large ARB memory with the smaller file size required to define a waveform allows the ARB to store up to 180 waveforms. Alternatively the whole of the memory can be devoted to a single file. One such file would store over 1.5 seconds of a 3GPP WCDMA waveform signal. The use of interpolation techniques ensures that when narrow band systems are simulated the waveform generator can still operate at a high sample rate without requiring excessively large amounts of data to be loaded or restricting the repetition time. The library waveforms are structured in a directory form to ease their selection and the optimization of the user's generator. The modulation waveforms can be simply changed by selection from a file list with the changeover between waveforms occurring in a few milliseconds rather than the many seconds required in more traditional waveform generators. The file name can be determined by the user to convey a useful description of the contents of the file. #### **Real Time Baseband Generator** Fitted internally, the optional Real Time Baseband, RTBB, generates baseband signals (I and Q) that modulate an RF source in real time to produce generic FSK, PSK and QAM signals at rates up to 2 Msymbols/sec. The RTBB generates or inputs a set of modulation symbols, modulates them with the chosen scheme, filters them using an appropriate channel filter, and then converts the digital stream to analogue I and Q for the I/Q vector modulator. The source of the symbol data is very flexible. The symbol data can originate from a variety of internal or external sources. Internal data source choices include a PRBS generator, an internal pattern generator or internal memory storage of user downloaded symbols. External real-time symbol data can be input in serial or parallel format via an industry standard Low Voltage Differential Signalling (LVDS) interface. Digitized I/Q data, available from sources such as basestation simulators, can be input via the LVDS interface as an alternative to external parallel or serial symbol data. Streaming digitized I/Q data samples are available as an output via the LVDS interface from internally generated symbols for testing D/A convertors. Synchronized clock, RF Burst, RF Burst Attenuation control and marker output signal facilities are available for both internal and external data generation. An important feature necessary to support GSM signal generation is the ability to frequency hop between channels. The RTBB option provides frequency hopping by re-mixing the I and Q data at baseband. The resultant I and Q vectors then modulate the core synthesizer frequency thus producing a new RF frequency at the output of the signal generator. This method ensures that synchronization is maintained between the IQ data and the hop trigger. In addition, because the main synthesizer hardware remains unchanged, frequency stabilization is nearly instantaneous. #### IQCreator® The 3410 series is supplied with a free copy of **IQCreator**®, a software package to aid the creation and download of files to the ARB and RTBB options. **IQCreator** [®] is a Windows based software utility that enables a user to set up a modulation scheme and then create an ARB file using modulation templates. The resulting file may be saved on a PC or downloaded into the ARB. User-defined configurations can also be saved. Consequently, it is possible to load previously saved setups to regenerate the ARB files quickly and easily. The capabilities of **IQCreator**® include:- Generic Modulation Types PSK, FSK, MSK, QAM modulation types Nyquist, Root Nyquist and Gaussian filters PRBS, fixed pattern and user defined data sources IQ errors - residual carrier, IQ imbalance, quadrature offset Multi-carrier Also included are 2G, 2.5G and 3G cellular TDMA and CDMA digital standards along with WLAN and other cordless phone standards. In addition, **IQCreator** * includes a utility that allows user-defined waveforms, created using software simulation tools such as MATLAB, to be converted and packaged into a form that can be downloaded into the 3410 Series ARB. **IQCreator** *is continually updated to include new modulation capabilities and facilities. The latest version is available for download at www.aeroflex.com. Options to have an instrument's ARB pre-loaded with a suite of example waveform files are available. A selection of waveforms from each of the standards, or just waveforms relevant to the user's applications, can be chosen. Although only available at the time of order, all the waveforms are available within IQCreator should any of the files be deleted then required in the future. #### I/Q Outputs Single ended baseband I/Q outputs are available as standard. Differential I/Q outputs, combined with comprehensive voltage bias and offset facilities, are optionally available to simplify component and module testing. ## **Pulse Modulator** An optional pulse modulator allows the generation of fast rise time RF signals with on/off ratios that meet the most demanding radar and ECM/ECCM test applications. ## **Remote Control** The 3410 series include both fast GPIB and Ethernet remote control interfaces for flexibility in production environments. RS-232 control is also provided for use in legacy ATE systems. The protocol and syntax of the GPIB commands have been designed in accordance with IEEE 488.2 to simplify program generation. Plug and play drivers are available that include a virtual front panel for remote instrument supervision and debug. ## Frequency Standard The 3410 series includes a high stability OCXO as standard. The inclusion of a main input power standby mode maintains the oscillator at working temperature while the rest of the instrument is powered down. Time to full specification working is thereby minimized for equipment facilities held on standby. #### Size The 2U rack height ensures the 3410 series occupies minimal space in a manufacturing rack or on the engineer's bench, allowing the provision of more compact test systems. The full rack width ensures easy stacking of instruments while the light weight allows for easy carrying in the laboratory or the field. ## **SPECIFICATIONS** ## **CARRIER FREQUENCY** #### Range 250 kHz - 2 GHz (3412) 250 kHz - 3 GHz (3413) 250 kHz - 4 GHz (3414) 250 kHz - 6 GHz (3416) #### Resolution 1 Hz, accuracy as frequency standard The carrier output phase can be advanced or retarded in increments of 0.036°. #### FREQUENCY SETTING TIME (NON-LIST MODE) After receipt of the GPIB interface deliminator (terminator), 23°C \pm 5°C ## Phase Noise Mode Optimized >10 kHz <5.5 ms, typically 4 ms, ≤375 MHz, to be within ≤200 Hz >375 MHz, to be within ≤0.1 ppm #### Phase Noise Mode Optimized <10 kHz <3 ms, typically 2.5 ms, \leq 375 MHz, to be within \leq 200 Hz <2.5 ms, typically 2 ms, >375 MHz, to be within \leq 0.1 ppm #### FREQUENCY SETTING TIME (OPTION 010 LIST MODE) After external trigger in List Mode, 23°C ± 5°C #### Phase Noise Mode Optimized >10 kHz <4 ms, typically 3 ms, \leq 375 MHz, to be within \leq 200 Hz >375 MHz, to be within \leq 0.1 ppm ## Phase Noise Mode Optimized <10 kHz <600 μ s, typically 500 μ s, \leq 375 MHz, to be within <200 Hz <500 μ s, typically 450 μ s, >375 MHz, to be within <0.1 ppm ## RF OUTPUT The RF output is controlled by an ALC system in normal operation. When IQ modulation is enabled alternative control modes are available to optimize the performance of the signal generator. #### Range ## **Electronic Attenuator** | ≤10 MHz | -140 to +13 dBm | |-----------|-------------------| | ≤2 GHz | -140 to +16 dBm | | ≤3 GHz | -140 to +16 dBm | | ≤3.75 GHz | -140 to +13 dBm | | ≤4 GHz | -140 to +10 dBm | | ≤6 GHz | -140 to +8 dBm | #### Mechanical Attenuator | ≤10 MHz | -140 to +16 dBm | |---------|-----------------| | ≤2 GHz | -140 to +19 dBm | | ≤3 GHz | -140 to +16 dBm | #### No Attenuator | ≤10 MHz | 0 to +21 dBm | |-----------|----------------| | ≤3 GHz | 0 to $+22$ dBm | | ≤3.75 GHz | 0 to +20 dBm | | ≤4 GHz | 0 to +17 dBm | | < 6 GHz | 0 to $+18 dRm$ | When AM is selected the maximum RF output is linearly reduced by up to 6 dB depending on the requested AM depth. When IQ modulation is selected maximum output is reduced by 6 dB below 100 MHz. #### Resolution 0.01 dB #### **RF Level Units** Units can be set to μ V, mV, V EMF or PD; dB relative 1 μ V, 1 mV, 1 V EMF or PD; or dBm. Conversion between dB and linear units may be achieved by pressing the appropriate units key (dB or V, mV or μ V). #### RF Output Accuracy (@ 23°C ± 5°C) #### Electronic Attenuator | RF Mode | | -127 to -30 dBm | >-30 dBm | |---------|--------|-----------------|---------------| | Auto | ≤2 GHz | ± 0.75 dB | \pm 0.50 dB | | | ≤3 GHz | ±1.00 dB | $\pm 0.75~dB$ | | | | -110 to -30 dBm | >-30 dBm | | | ≤6 GHz | ±1.25 dB | ±1.00 dB | #### Mechanical Attenuator | RF Mode | | -127 to -28 dBm | >-28 dBm | |---------|--------|-----------------|------------------| | Auto | ≤2 GHz | ± 0.75 dB | \pm 0.50 dB | | | ≤3 GHz | ±1.00 dB | $\pm 0.75 \; dB$ | #### No Attenuator | RF Mode | | >0 dBm | |---------|---------|---------------| | Auto | ≤ 2 GHz | $\pm 0.50 dB$ | | | ≤ 3 GHz | $\pm 0.75 dB$ | | | < 6 GHz | $\pm 1.00 dB$ | #### Level Accuracy With IQ Modulation For constant envelope modulation systems: typical standard level error $\pm 0.15~\mathrm{dB}$ For non-constant envelope modulation systems: typical standard level error $\pm 0.25~\text{dB}$ ## Temperature Stability ``` \pm 0.01 dB/°C, \leq 3 GHz \pm 0.02 dB/°C, \leq 4 GHz, \pm 0.02 dB/°C typical, \leq 6 GHz ``` #### **RF Flatness** Typical flatness at 0 dBm ## LEVEL SETTING TIME Electronic attenuator, Option 003 is assumed in all cases. ALC loop bandwidth 'Moderate' or 'Broad', to be within ≤0.3 dB #### Level Setting Time (Non-List Mode) After receipt of the GPIB interface deliminator (terminator), 23°C \pm 5°C #### <4.5 ms, typically 2.5 ms ## Level Setting Time (Option 010 List Mode) After external trigger in List Mode, 23°C ± 5°C <3 ms, typically 1.5 ms #### **Output VSWR** #### **Electronic Attenuator** | For output levels <0 dBm | Frequency | Output VSWR | |--------------------------|-----------|-------------| | | ≤2 GHz | <1.25:1 | | | ≤3 GHz | <1.40:1 | | | ≤4 GHz | <1.50:1 | | | ≤6 GHz | <1.60:1 | For output levels >0 dBm VSWR is <1.5:1 ≤4 GHz, <1.8:1 ≤6 GHz #### Mechanical Attenuator For output levels <0 dBm Frequency Output VSWR \$\leq 3 \text{ GHz} \qquad 1,33:1 For output levels >0 dBm VSWR is <1.5:1, \le 3 GHz #### No Attenuator | Frequency | Output VSWR | |-----------|-------------| | ≤4 GHz | <1.5:1 | | ≤6 GHz | <1.8:1 | #### Attenuator Repeatability Mechanical attenuator typically 0.1 dB #### **Output Connector** Front panel 50 Ω type N female to MIL-PRF-39012 class 2 #### **Output Protection** Protects the instrument from externally applied RF power (from a 50 Ω source) of 50 W up to 3 GHz and 25 W up to 4 GHz The RPP trip may be reset from the front panel or via the remote interface. For safety, the protection is also provided when the instrument is switched off. 3416 damage level 0.5 W (+27 dBm) from a max 5:1 VSWR, all frequencies ## SPECTRAL PURITY All parameters stated at RF level ≤+7 dBm in Noise and ACP RF modes #### Harmonics <-30 dBc, typically <-40 dBc ## Sub- and Non-Harmonics For offsets >10 kHz - <-70 dBc for carrier frequencies ≤3 GHz - <-60 dBc for carrier frequencies ≤6 GHz ## Residual FM (FM on CW) $<\!2.5$ Hz RMS (typically 1.5 Hz) at 1 GHz in a 300 Hz to 3.4 kHz unweighted bandwidth Typical Residual FM Typical SSB Phase Noise at 1 GHz, phase noise optimized >10 kHz offset Typical SSB Phase Noise at 1 GHz, phase noise optimized <10 kHz offset #### SSB Phase Noise For 20 kHz offset, Noise Optimized mode | | CW/IQ | |----------|--------------| | ≤375 MHz | <-115 dBc/Hz | | 500 MHz | <-124 dBc/Hz | | 1 GHz | <-118 dBc/Hz | | 2 GHz | <-112 dBc/Hz | | 3 GHz | <-108 dBc/Hz | | 4 GHz | <-106 dBc/Hz | | 6 GHz | <-102 dBc/Hz | Typical SSB Phase Noise Performance at 20 kHz Offset, phase noise optimized >10 kHz offset Typical Phase Noise at 2.1 GHz #### SSB AM Noise SSB AM noise at 20 kHz offset (Typical values) measured at levels >0 dBm | Frequency MHz | CW/IQ (dBc/Hz) | |---------------|----------------| | ≤3 GHz | -130 | | ≤6 GHz | -125 | Typical AM Noise at 1 GHz ### RF Leakage $<\!0.5~\mu\text{V}$ PD at the carrier frequency into a single turn 25 mm loop 25 mm or more from the case of the signal generator, for carrier frequencies $<\!3$ GHz ## Wideband Noise Applicable for all carrier levels at offsets >5 MHz and <50 MHz excluding thermal noise (23°C \pm 5°C) | RF Mode | ≤375 MHz | ≤3 GHz | ≤6 GHz | |---------|----------|------------------|----------| | | (dBc/Hz) | (dBc/Hz) | (dBc/Hz) | | Power | <-138 | <-142 (-148 typ) | <-136 | | Noise | <-138 | <-142 (-148 typ) | <-136 | | ACP | <-135 | <-140 | <-134 | ## **MODULATION** FM, AM and Φ M can be applied to the carrier using internal or external modulation sources. The internal modulation source is capable of generating two simultaneous signals into any one of the modulation channels. The internal and external modulation sources can be simultaneously enabled in order to produce combined amplitude and frequency (or phase) modulation. Internal and external IQ modulation can be applied. In this mode, FM, AM and $\Phi \! M$ are not permitted. Optional Pulse modulation can be used in combination with FM, AM, Φ M and IQ from an external pulse source. #### FREQUENCY MODULATION #### Peak Deviation | Frequency | Maximum Peak Deviation | |--------------------|------------------------| | 250 kHz to 375 MHz | 7.5 MHz | | 375 MHz to 750 MHz | 3.75 MHz | | 750 MHz to 1.5 GHz | 7.5 MHz | | 1.5 GHz to 3 GHz | 15 MHz | | 3 GHz to 6 GHz | 30 MHz | | | | ## FM Accuracy At 1 kHz rate ±3% of set deviation excluding residual FM Displayed resolution is 4 digits or 1 Hz. #### FM Bandwidth 0.5 dB DC to 200 kHz (DC coupled, 100 k Ω) 10 Hz to 200 kHz (AC coupled, 100 k Ω) 3 dB Typically 20 MHz (DC or AC coupled, 50 Ω) Typical FM Bandwidth ## **Carrier Frequency Offset** For DC coupled FM $\pm(1~\text{Hz}+0.1\%$ of set deviation) after performing a DCFM null operation #### **Total Harmonic Distortion** At 1 kHz rate ${<}0.15\%$ for deviations up to 2% of maximum allowed deviation <0.6% for deviations up to 20% of maximum allowed deviation <1.5% at maximum deviation #### PHASE MODULATION ## Phase Deviation 0 to 10 radians Displayed resolution is 4 digits or 0.01 radians. #### Accuracy At 1 kHz rate ±4% of set deviation excluding residual phase modulation ## Bandwidth 0.5 dB 100 Hz to 10 kHz (AC coupled, 100 k Ω) #### **Total Harmonic Distortion** At 1 kHz rate <0.5% at 10 radians deviation Typically <0.1% at 1 radian deviation ## AMPLITUDE MODULATION Specifications apply for carrier frequencies from 2 MHz up to 2 GHz, usable to 4 GHz and 'Noise' or 'ACP' RF modes. Maximum specified output power is reduced by 2 dB, ≤10 MHz for 'No attenuator' Option 001 with AM selected. #### **Modulation Depth** 0 to 99.9%, Displayed resolution is 3 digits or 0.1% #### Accuracy At 1 kHz rate ±4% of set depth ±1% excluding residual AM #### AM Bandwidth 1 dB DC to 200 kHz (DC coupled, 100 k Ω) 10 Hz to 200 kHz (AC coupled, 100 k Ω) 3 dB Typically 30 MHz (DC or AC coupled, 50 Ω) Typical AM Bandwidth #### **Total Harmonic Distortion** For 1 kHz modulation rate <1% for depths ≤30% <2% for depths ≤80% #### FM on AM Typically $<\!20$ Hz for 30% AM depth at a modulation rate of 1 kHz and carrier frequency of 500 MHz #### ΦM on AM Typically <0.02 radian for 30% AM depth at a modulation rate of 1 kHz and carrier frequency of 500 MHz #### **IQ MODULATION** Performance applicable in ACP and Noise modes only ## **IQ** Inputs BNC connector inputs, selectable 50 $\Omega/100~\mathrm{k}\Omega$ input impedance Full scale input (I^2+Q^2)^{0.5} occurs for 0.5 V rms (The level requested is obtained by applying 0.5 VDC to either the I or Q input) Typical IQ Bandwidth ## Modulation Bandwidth Relative to DC At $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$: $\pm 0.5 \text{ dB}$ for frequencies DC up to 5 MHz 1 dB for frequencies DC up to 10 MHz 3 dB: RF Mode ≤2.8 GHz ≤6 GHz Noise >42 MHz, 50 MHz typ >35 MHz, 45 MHz typ ACP >48 MHz, 55 MHz typ >40 MHz, 50 MHz typ #### **DC Vector Accuracy** #### Relative to Full Scale (0.5 V RMS) Static Error Vector Magnitude (EVM) <1% RMS at full scale Magnitude error <0.5% RMS at full scale Phase error <0.5° RMS at full scale #### Residual Carrier Magnitude: For O V input voltage, relative to full scale #### RF Mode Noise <-45 dBc, typically <-55 dBc ACP <-40 dBc, typically <-50 dBc Valid for 12 hours after executing an IQ self-calibration and within $\pm 5^{\circ}\mathrm{C}$ of the calibration temperature. The instrument displays a warning if the time or temperature limits are exceeded. Static EVM and phase error measured with residual carrier magnitude removed. #### **IQ Image Suppression** At 10 kHz modulation frequency Typically <-50 dBc @ 10 kHz ## Linearity (See linearity chart over page) Adjacent Channel Power (ACP), in ACP mode for continuous and discontinuous signals at RF output levels ≤ 0 dBm, over the temperature range 23°C \pm 5°C #### RF BURST CONTROL A digital control bit is used to generate an analog ramp (up or down) of the RF output. The Burst Gate control signal can either be generated internally as part of the optional internal base-band source, or provided externally by the user on the rear panel connector. When internally generated, the Burst Gate control signal appears on the rear panel auxiliary connector that then serves as an output. #### On/Off Ratio For the temperature range 23°C ± 5°C >90 dB for carriers ≤3 GHz >80 dB for carriers ≤4 GHz >65 dB for carriers ≤6 GHz #### Ramp Profile Rise and fall time after the L-H and H-L transitions of the burst control bit respectively can be defined by the user from 10 μ s to 999 μ s in 0.1 μ s steps. Burst Gate control input is a TTL level (HCT), 50 Ω impedance BNC input on the rear panel. RF ramp can be adjusted in time by $\pm 50~\mu s$ in increments of 0.1 μs with respect to the trigger event. ### RF BURST ATTENUATION CONTROL A digital attenuation control bit (in conjunction with the ramp control bit) is used to decrease the RF level from the set level to an alternative level during burst modulation. The Burst Attenuation Trigger signal can be provided internally as part of the optional dual arbitrary waveform generator (ARB), or externally on a rear panel connector. When internally generated, the Burst Attenuation Trigger control signal appears on the rear panel auxiliary connector that then serves as an output. Attenuation range available is 0 to 70 dB. Burst Attenuation Trigger control is a TTL level (HCT), 50 Ω impedance | | TETRA | GSM 900 / 1800 / 1900
GSM EDGE (Enhanced Data
rate for GSM Evolution) | 802.11a**
Wireless LAN
(Spectral Mask) | IS-95 (CDMAone) | |---|---|--|--|--| | Frequency | 130 MHz - 1 GHz | 850 MHz - 1 GHz | 5.15 - 5.825 GHz | 824 - 894 MHz | | Range(s) | | 1700 - 1900 MHz | | 1850 - 2000 MHz | | ACLR | <-70 dBc @ 25 kHz offset | <-35 dBc @ 200 kHz offset | <-25 dBr @ 11 MHz offset | <-65 dBc @ 885 kHz offset | | (Continuous & | <-80 dBc* @ 50 kHz offset | <-70 dBc @ 400 kHz offset | <-45 dBr @ 20 MHz offset | <-75 dBc @ 1.25 MHz offset | | Discontinuous) | <-80 dBc* @ 75 kHz offset | <-80 dBc @ 600 kHz offset | <-60 dBr* @ 30 MHz offset | <-80 dBc @ 1.98 MHz offset | | | 3GPP/WCDMA | NADC (IS - 54, IS - 136) | JDC/PDC | PHP/PHS | | Frequency
Range(s) | 1855 - 2200 MHz | 824 - 894 MHz
1850 - 2000 MHz | 810 - 826 MHz
940 - 956 MHz
1429 - 1513 MHz | 1895 - 1918 MHz | | ACLR
(Continuous &
Discontinuous) | <-70 dBc @ 5 MHz offset
<-72 dBc* @ 5 MHz offset | <-40 dBc @ 30 kHz offset
<-78 dBc* @ 60 kHz offset
<-80 dBc* @ 90 kHz offset | <-65 dBc @ 50 kHz offset
<-80 dBc* @ 100 kHz offset | <-75 dBc @ 600 kHz offset
<-80 dBc @ 900 kHz offset | ^{*} denotes typical value ** At RF o/p level ≤-4 dBm signal available on the rear panel Auxiliary connector. RF burst attenuation requires Electronic Attenuator Opt 003. #### INTERNAL MODULATION OSCILLATOR The internal modulation source is capable of generating up to two simultaneous signals into any one of the modulation systems. ## Frequency Range 0.1 Hz to 50 kHz (16 MHz with Option 005) with 0.1 Hz or 5 digits of resolution #### Accuracy As frequency standard #### Distortion <0.1 % for a sine wave at 1 kHz In addition to a sine wave the following waveforms can be generated: Triangle 0.1 Hz to 10 kHz (2 MHz with Option 005) Ramp 0.1 Hz to 10 kHz (2 MHz with Option 005) Square 0.1 Hz to 5 kHz (1 MHz with Option 005) (Note: modulation frequency can be set to 50 kHz irrespective of waveform type) #### Level Modulation source signals are available on the rear panel I/AM OUT and Q/FM OUT at nominal level of 1 V peak EMF from 50 Ω source impedance. ## **EXTERNAL MODULATION SOURCE** External inputs are available with a selectable input impedance of 50 Ω or 100 k Ω (default setting), AC or DC coupled. Apply 1 V RMS (default) or 1 V peak for the set modulation. A HI/LO indicator when the applied signal is greater than $\pm 6\%$ from nominal External AM is input to EXT I/EXT AM front panel BNC connector. External FM is input to EXT Q/EXT FM front panel BNC connector. ## INTERNAL DUAL CHANNEL ARB SOURCE (OPTION 005) A high performance Dual Arbitrary (ARB) Waveform Generator that provides IQ signals for the IQ modulator The ARB enables files to be downloaded with sample rates from 17 kHz to 66 MHz. The ARB uses an interpolation system to increase the digital to analog converter sample rate and avoid the use of reconstruction filters. Typical 3GPP test model 1 (64 channels) ### ARB CHARACTERISTICS ## Flash Memory Size 23,592,960 sample pairs #### Maximum Number of Files 180 ## Sample Format 32 bits of data - 14 bits I, 14 bits Q, 3 associated marker bits #### Sample Rate Tuning ± 20 ppm, 0.1 ppm step resolution #### D-A Converter Resolution 14 bits #### D-A Sample Rate 44 to 66 Msamples/s #### Interpolation Factor Automatically selected #### Reconstruction Filter Stop Band Attenuation >70 dB #### ARB Spectral Purity Spurious free dynamic range >70 dB, typically >80 dB 20 kHz offset phase noise <-120 dBc/Hz <-140 dBc/Hz Floor noise ICCreator™ Windows based software package is provided for the creation, formatting and downloading of ARB waveform files to the 3410 series. A waveform library is provided on a CD containing a selection of files for testing 2G, 2.5G and 3G systems. Files can be downloaded from www.aeroflex.com. #### **Marker Control Bits** Up to 3 marker bits (1-3) can be attached to each sample of IQ data. These can be used to indicate significant points in the waveform and are available as HC CMOS outputs via the rear panel Aux IN/OUT connector. Marker bit 1 can be used as RF Burst Control signal. Marker bit 2 can be used as Burst Attenuation Trigger signal to decrease (attenuate) the RF level from its nominal value. #### **Control Mode** Continuous, single or triggered operation of the ARB An external TTL trigger input signal is available on the AUX IN/OUT rear panel connector. #### IQ Outputs (Not applicable with Option 009 fitted) The IO signals produced by the ARB are available on the rear panel I/AM OUT and Q/FM OUT BNC connectors. Output level is 0.5 V RMS EMF (vector sum) from a source impedance of 50 Ω . ## REAL TIME BASEBAND (OPTION 008) Allows the creation of digitally modulated signals using generic modulation formats. An internal data source provides PRBS or fixed patterns. External real-time data in the form of symbol data, or digital IQ data may be applied via an LVDS interface. ## **Generic Modulation Formats** **PSK** BPSK, QPSK, 8PSK, 16PSK 8PSK EDGE (8PSK with $3\pi/8$ rotation) $\pi/2$ DBPSK, $\pi/4$ DQPSK, $\pi/8$ D8PSK DBPSK, DQPSK, D8PSK OQPSK (time offset) MSK **GMSK** FSK/GFSK 2 and 4 level symmetric QAM 16, 32, 64, 128, 256 levels For data bit to symbol mapping information refer to Technical Note "IFR 3410 Option 8 RTBB Ancillary Information" #### SYMBOL RATE #### Range 5 kHz to 2 MHz. Resolution 1 Hz #### **BASEBAND CHANNEL FILTERS** ## Filter Types Nyquist a = 0.1 to 0.8, resolution 0.01 Root Nyquist a = 0.1 to 0.8, resolution 0.01 Bt 0.1 to 1.0, resolution 0.1 Gaussian "Linearized Gaussian" as defined in GSM 05.04 **EDGE** #### **DATA SOURCE** #### **Formats** Internal Data PRBS - PN9, PN11, PN15, PN16, PN20, PN21, PN23. Fixed Pattern consisting of - 0, 0, 0, 0, 0, 0 0, 1, 0, 1, 0, 1 1, 0, 1, 0, 1, 0 1, 1, 1, 1, 1, 1 User-defined symbol file stored in non-volatile memory (Max size 256 kB) #### **External Serial Data** A single bit stream representing symbol information can be applied. The bit to symbol conversion is determined from the selected modulation type. #### External Parallel Data Symbol information consisting of 1 to 8 data bits can be applied. External parallel and serial data is input via the LVDS connector on the #### **DATA ENCODING** None, Differential, GSM Differential, Inverted #### TIMING/SYNCHRONIZATION All clock and synchronization signals are provided internally by Option 8 RTBB and made available to the user on the rear panel LVDS connector. An external clock may be phase aligned to the internal clock via a "sync" operation. #### **External Serial Data Clock** Eight times the symbol rate, for all modulation types. #### External Parallel Data Clock Nominal symbol rate ## FREOUENCY HOPPING #### Frequency Hop List Up to 32 frequency values. The frequency values entered represent offset values from the current RF frequency. ## Frequency Offset Values Offset values range ±10 MHz ## **MODES** #### Linear On receipt of a hop trigger, the next frequency in the list is indexed. ### Random On receipt of a hop trigger, an internal PRBS generator indexes through the frequency list. PN length and polynomial initial seed value are user selectable. PN values selectable from - 9, 11, 15, 16, 20, 21, and 23. ## External On receipt of a hop trigger, the 5-bit hop address lines applied to the LVDS connector are used to index the frequency list. Max hop rate (hops/sec) is half symbol rate. Hopping is synchronized to symbol transition. ## DIGITAL IQ DATA Digital IQ data is available via the LVDS connector on the rear panel. #### EXTERNAL IQ DATA IN External 16-bit IQ data can be applied to an LVDS interface. The data can then be filtered or not, depending on the application, by the baseband board and fed to the DACs. All clock and sync signals are located on the LVDS connector. These can be used to synchronize to an externally applied clock. #### INTERNAL IQ DATA OUT 16-bit IQ data is available on the LVDS interface when the modulation is generated internally. Outputs can be disabled. #### **TONES** A tone (CW) only mode is available. Up to 2 tones may be selected. Each tone may be independently enabled and disabled. Frequency Range carrier frequency ± 10 MHz Relative Level 60 dE ## DIFFERENTIAL I/Q OUTPUT (OPTION 009) When differential I/Q outputs are enabled signal generator RF carrier output is CW only. ## **Output Impedance** Can be used with single ended 50 Ω loads or differential 100 Ω loads. Delivered bias voltages are halved with single ended loads. ### I/Q Bias Voltages Independent I and Q channel bias voltages settable within the range of $\pm 3~\text{V}$ #### Bias Voltage Resolution 1.0 mV nominal Accuracy $\pm 2\% \pm 4$ mV max, $\pm 1\% \pm 2$ mV typical Offset See Bias Voltage above. #### Differential Offset Voltage Range ±300 mV Resolution 100 uV nominal Accuracy $\pm 2\% \pm 3.3 \text{ mV max, } \pm 1\% \pm 0.7 \text{ mV typical}$ #### Level Mode Variable IQ signal level over 45 dB range ## **Differential Signal Balance** typ 0.15 dB @10 MHz ## I/O Channel Balance ±0.2 dB @1 MHz #### I/Q Level Imbalance Adjust ±4 dB nominal continuously variable ## I/Q Signal Amplitude 22.4 mV to 4 V pk-pk per channel #### I/Q Signal Amplitude Accuracy <2% at 20 kHz, typ 1.5%, excludes termination errors #### Baseband Purity (2 V p-p set voltage at 1 MHz) 2nd Harm -70 dBc 3rd Harm -65 dBc IMD -70 dBc (100 kHz tone spacing, at 1 MHz) #### SWEEP FACILITY Provides a digital sweep of RF frequency, RF level and Analog Modulation Sources in discrete steps Start, stop, step size, number and step time can be controlled. Step time may be set from 2.5 ms to 10 s with 0.1 ms resolution. (20 ms for mechanical attenuator Option 002) The sweep can be set to be continuous, single or externally triggered from the rear panel. TTL BNC Female rear panel. #### Frequency Sweep Linear step size: 1 Hz minimum step Logarithmic: 0.01% to 50%, 0.01% step #### Level Sweep 0.01 dB minimum step #### **Modulation Oscillator** 0.1 Hz minimum frequency step #### LIST MODE Up to 500 frequencies and levels can be entered in the list. Start address, stop address and dwell time can be controlled. Dwell time can be set from 500 μ s to 10 s. Requires Option 003 Electronic Attenuator ## FAST PULSE MODULATOR (OPTION 006) This option requires Electronic Attenuator Option 003 to be fitted. #### On/Off Ratio >80 dB for carrier levels ≥ -60 dBm #### Rise/Fall Time <20 ns typical (10 to 90%) #### **Pulse Delay** Typically <50 ns #### RF Level Accuracy RF mode = 'auto', as standard ± 0.2 dB The above specification is met for all power levels above 150 MHz. #### AM Depth and Distortion AM operation is unspecified below 10 MHz. AM depth and distortion specification is degraded for operation above 0 dBm at carrier frequencies <150 MHz. #### Video Breakthrough RF Mode Power $<\pm50$ mV for RF levels >+10 dBm < ±25 mV for RF levels in the range -10 dBm to +10 dBm <±10 mV for RF levels ≤-10 dBm Noise $<\pm50$ mV for RF levels >+4 dBm $<\!\pm25$ mV for RF levels in the range -16 dBm to +4 dBm <±10 mV for RF levels ≤-16 dBm ACP $<\pm50$ mV for RF levels >-6 dBm < ± 25 mV for RF levels in the range -26 dBm to -6 dBm $< \pm 10$ mV for RF levels ≤ -26 dBm ## Modulation Source PULSE IN BNC (female) connector rear panel ## Input Impedance 50Ω ## Input Level TTL level (HCT) #### **Control Voltage** A HCT logic 0 (0 V to 0.8 V) turns the carrier OFF A HCT logic 1 (2 V to 5 V) turns the carrier ON ## Max. Safe Input Level ±10 V ## NON-VOLATILE MEMORY STORES Full instrument configurations can be saved to 100 memory stores (0 - 99). ## FREQUENCY STANDARD 10 MHz OCXO fitted as standard #### Ageing Rate < ±0.8 x 10⁻⁷ per year after 30 days continuous use ## **Temperature Coefficient** $<\pm5 \text{ x } 10^{-8}$ over the temperature range 0°C to 50°C #### **Output Frequency** Within 2×10^7 of final frequency after 10 minutes from connecting supply power and switching on at a temperature of 20° C Standby power is provided while the instrument is off but connected to the supply. Output of 2 V pk-pk from 50 Ω is provided on a rear panel BNC connector. #### EXTERNAL STANDARD INPUT 1 MHz or 10 MHz at a level of 300 mV RMS to 1.8 V RMS into 1 k Ω on the rear panel BNC connector #### REAR PANEL OUTPUTS (OPTION 007) With this option fitted RF output, EXT I/EXT AM input and EXT Q/EXT FM input connectors are transferred to the rear panel. When Option 009 is fitted only RF output connector is transferred to the rear panel. The standard signal generator specification remains unaltered. ## **GENERAL** #### WARRANTY 2 years with options for 3, 4 and 5 years #### **CALIBRATION INTERVAL** Recommended at 2 years #### REMOTE CONTROL INTERFACES #### Ethernet All signal generator parameters except the supply switch are remotely programmable. The following LAN protocols supported: VXI-11 Telephone Network (TELNET) File Transfer Protocol (FTP) (instrument firmware upgrades only) ## GPIB All signal generator parameters except the supply switch are remotely programmable. The GPIB is designed in accordance with the IEEE 488.2. #### RS-232 All functions except the supply switch are remotely programmable. Can be used for upgrading the instrument firmware without removal of the instrument covers. ## **Interface Functions** SH1, AH1, T6, L4, SR1, RL1, PPO, DC1, DT1, CO, E2 #### **DIMENSIONS AND WEIGHT** | | Height | Width | Depth | |-------------|--------|--------------|------------| | Overall | 107 mm | 468 mm (19") | 545 mm max | | Rackmount * | 89 mm | 425 mm | 545 mm max | * Occupies 2U of rack height excluding removable feet bottom feet and front handles #### Weight 3412/13/14 10.5 kg 3416 11.5 kg #### RATED RANGE OF USE MIL-T-28800E Class 5 #### Temperature 0°C to 50°C #### Humidity 45%, 0°C to 50°C 95%, 30°C to 40°C #### Altitude 700 mbars (3050 m. 10.000 feet) #### CONDITIONS OF STORAGE AND TRANSPORT MIL-T-28800E Class 5 Temperature -40°C to +71°C Altitude 570 mbar (4570 m, 15,000 feet) #### **POWER REQUIREMENTS** #### AC Supply 100 - 240 V \sim (Limit 90 - 264 V) 50 - 60 Hz \sim (Limit 45 -66 Hz) 185 VA Max #### **ELECTROMAGNETIC COMPATIBILITY** Conforms to EC directives 89/336/EEC and standard IEC/EN 61326-1:1997;RF emission class B, immunity table 1 and performance criterion B #### SAFETY Conforms with the requirements of EEC Council Directive 73/23/EEC (as amended) and the product safety standard IEC / EN61010-1: 2001 + C1: 2002 + C2: 2003 for class 1 portable equipment, for use in a Pollution Degree 2 environment. The instrument is designed to be operated from an Installation Category 2 supply. ## **VERSIONS, OPTIONS AND ACCESSORIES** When ordering please quote the full ordering number information. #### **Ordering** | Numbers | Versions | |---------|---| | 3412 | 250 kHz to 2 GHz Digital RF Signal Generator | | 3413 | 250 kHz to 3 GHz Digital RF Signal Generator | | 3414 | 250 kHz to 4 GHz Digital RF Signal Generator | | 3416 | 250 kHz to 6 GHz Digital RF Signal Generator | | | Supplied with AC power supply lead and CD-ROM containing: | | | Operating Manual | | | Data Sheet | | | Factory Test Results (for the unit supplied) and Certificate of Calibration | | | $\mbox{\it IQCreator}^{\mbox{\tiny \$}}$ ARB data file creation and download software | | | VISA Plug 'n' Play driver software | Library of common data files for dual ARB option | | Attenuator Options 3410 must be ordered with one of the following atten- | Option 302 | Cellular example waveforms; GSM; EDGE; IS136; PDC | |------------|---|--|---| | | uator options. Refer to main specification for details. | Option 303 | PMR example waveforms; TETRA, P25 | | Option 001 | No attenuator | Option 304 | Avionics example waveforms; VDL | | Option 002 | Mechanical attenuator (Not available on 3414/3416) | Option 305 | WLAN example waveforms; 802.11; Bluetooth | | Option 003 | Electronic attenuator | Option 306 | Satellite/Cable example waveforms; Various QAM for- | | | Further Instrument Options | | mats | | Option 005 | ARB waveform generator | Option 307 | Digital cordless example waveforms; DECT; PHS | | 1 | (Not available with Option 008) | For details on each waveform included in option 300 series, refe | | | Option 006 | Pulse Modulation
(Requires Option 003, not available with Option 009) | Technical Note 3410 Option 300 waveform information
Part Number 46891/942 | | | Option 007 | Rear panel outputs
(RF Output only with Option 009) | | Optional Accessories | | | | 46882/499 | Operating manual (paper format) | | Option 008 | Real Time Baseband
(Not available with Option 005 or 009) | 46880/111 | Service manual (includes semi-automatic adjustment software) | | Option 009 | Differential I/Q output (Requires Option 005, not available with Option 006) | 82542 | Breakout box (for Auxilliary connector) | | Option 010 | List Mode (Requires Option 003) 2G CDMA software license | 43129/189 | 1.5 m GPIB lead | | • | | 46662/745 | Soft carry case | | Option 020 | | 46884/650 | RS-232 cable, 9 way female to female, 1.5 m | | Option 021 | n 021 3G CDMA software license | | RS-232 cable, 9 way to 25 way female, 1.5 m | | | Warranty Options | 46885/138 | Rack mounting kit (front panel brackets) | | Option 203 | 3 year warranty | 43139/042 | RF double screened connector cable 50 Ω , | | Option 204 | 4 year warranty | 10103,012 | 1.5 m, BNC (m) | | Option 205 | 5 year warranty | 54311/095 | RF double screened connector cable 50 Ω , 1 m, type N connectors | | | Pre-Loaded Example Waveforms Options (Requires Option 005 ARB Waveform Generator) | 54311/092 | Coaxial adapter N male to BNC female | | Option 300 | Example waveforms - a selection from each of the standards (Requires Option 021) | 59999/163 | Precision coaxial adapter N male to SMA female | | Option 301 | CDMA example waveforms; 3GPP; CDMA2000; IS- | | | CHINA Beijing Tel: [+86] (10) 6467 2761 2716 Fax: [+86] (10) 6467 2821 CHINA Shanghai Tel: [+86] (21) 6282 8001 Fax: [+86] (21) 62828 8002 **FINLAND** Tel: [+358] (9) 2709 5541 Fax: [+358] (9) 804 2441 FRANCE Tel: [+33] 1 60 79 96 00 Fax: [+33] 1 60 77 69 22 **GERMANY** 95 (Requires Option 021) Tel: [+49] 8131 2926-0 Fax: [+49] 8131 2926-130 HONG KONG Tel: [+852] 2832 7988 Fax: [+852] 2834 5364 INDIA Tel: [+91] 80 5115 4501 Fax: [+91] 80 5115 4502 KOREA Tel: [+82] (2) 3424 2719 Fax: [+82] (2) 3424 8620 SCANDINAVIA UK Stev Tel: [+45] 9614 0045 Tel: [+ Fax: [+45] 9614 0047 Fax: [- SPAIN Tel: [+34] (91) 640 11 34 Fax: [+34] (91) 640 06 40 **UK Burnham** Tel: [+44] (0) 1682 604455 Fax: [+44] (0) 1682 662017 UK Stevenage Tel: [+44] (0) 1438 742200 Fax: [+44] (0) 1438 727601 Freephone: 0800 282388 USA Tel: [+1] (316) 522 4981 Fax: [+1] (316) 522 1360 Toll Free: 800 835 2352 As we are always seeking to improve our products, the information in this document gives only a general indication of the product capacity, performance and suitability, none of which shall form part of any contract. We reserve the right to make design changes without notice. All trademarks are acknowledged. Parent company Aeroflex, Inc. ©Aeroflex 2005. www.aeroflex.com info-test@aeroflex.com Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.